光刻机移动晶圆台环形吹扫射流的简化方案

IF 7.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Jian Cao, Sen Li, Xin Wen, Hong Liu, Ben-Long Wang, Ying-Zheng Liu
{"title":"光刻机移动晶圆台环形吹扫射流的简化方案","authors":"Jian Cao,&nbsp;Sen Li,&nbsp;Xin Wen,&nbsp;Hong Liu,&nbsp;Ben-Long Wang,&nbsp;Ying-Zheng Liu","doi":"10.1007/s11433-024-2571-4","DOIUrl":null,"url":null,"abstract":"<div><p>A simplified scenario of the annular purging jet issuing from the moving wafer stage in the lithography machine is established to study the interactions between the jet and the ambient fluid. Numerical simulations in the reference frame associated with the moving stage are carried out to delineate the dynamics of the purging jet under different ratios of the jet velocity to the moving velocity. As the velocity ratio increases, different flow patterns depict that the flow evolves from laminar to turbulent and from crossflow-dominated to purging-dominated. The behaviors of the leading-edge shear layer, i.e., breakthrough by the crossflow or impingement to the upper wall, are found to determine the flow pattern and influence the entrainment process. The shear layer dynamics are investigated by analogy to a counter-current mixing layer. The mixing layer ratio of the annular purging jet is obtained, suggesting the transition from absolute to convective instability. The infiltration flux into the inner region of the annular purging jet is evaluated, indicating the dominance of the leakage near the upper wall. The performance of the annular purging jet is assessed in terms of the effectiveness, the fraction of the infiltration flux prevented compared with the unshielded condition and is related to the flow unsteadiness. As the velocity ratio increases, the shielding effect is enhanced and the effectiveness of the annular air curtain increases monotonically with decreasing growth rate.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 9","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On simplified scenario of annular purging jet issuing from moving wafer stage in lithography machine\",\"authors\":\"Jian Cao,&nbsp;Sen Li,&nbsp;Xin Wen,&nbsp;Hong Liu,&nbsp;Ben-Long Wang,&nbsp;Ying-Zheng Liu\",\"doi\":\"10.1007/s11433-024-2571-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A simplified scenario of the annular purging jet issuing from the moving wafer stage in the lithography machine is established to study the interactions between the jet and the ambient fluid. Numerical simulations in the reference frame associated with the moving stage are carried out to delineate the dynamics of the purging jet under different ratios of the jet velocity to the moving velocity. As the velocity ratio increases, different flow patterns depict that the flow evolves from laminar to turbulent and from crossflow-dominated to purging-dominated. The behaviors of the leading-edge shear layer, i.e., breakthrough by the crossflow or impingement to the upper wall, are found to determine the flow pattern and influence the entrainment process. The shear layer dynamics are investigated by analogy to a counter-current mixing layer. The mixing layer ratio of the annular purging jet is obtained, suggesting the transition from absolute to convective instability. The infiltration flux into the inner region of the annular purging jet is evaluated, indicating the dominance of the leakage near the upper wall. The performance of the annular purging jet is assessed in terms of the effectiveness, the fraction of the infiltration flux prevented compared with the unshielded condition and is related to the flow unsteadiness. As the velocity ratio increases, the shielding effect is enhanced and the effectiveness of the annular air curtain increases monotonically with decreasing growth rate.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"68 9\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-024-2571-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2571-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

建立了从光刻机移动晶圆级发出的环形吹扫射流的简化场景,研究了射流与周围流体的相互作用。在与运动阶段相关的参考系中进行了数值模拟,描绘了不同射流速度与运动速度之比下的清洗射流动力学。随着速度比的增大,不同的流型描述了流动由层流向湍流、由横流为主向吹扫为主的演变。发现前缘剪切层的行为,即横流突破或撞击上壁面,决定了流动模式并影响了夹带过程。通过类比逆流混合层来研究剪切层的动力学。得到了环形吹扫射流的混合层比,表明其由绝对不稳定向对流不稳定过渡。对环空净化射流内部区域的渗透通量进行了评估,表明泄漏主要集中在上壁附近。环空吹扫射流的性能是根据有效性、与未屏蔽条件相比阻止渗透通量的比例以及与流动不稳定性有关的因素来评估的。随着速度比的增大,环形气幕的屏蔽效果增强,其效能随速度比的减小而单调增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On simplified scenario of annular purging jet issuing from moving wafer stage in lithography machine

A simplified scenario of the annular purging jet issuing from the moving wafer stage in the lithography machine is established to study the interactions between the jet and the ambient fluid. Numerical simulations in the reference frame associated with the moving stage are carried out to delineate the dynamics of the purging jet under different ratios of the jet velocity to the moving velocity. As the velocity ratio increases, different flow patterns depict that the flow evolves from laminar to turbulent and from crossflow-dominated to purging-dominated. The behaviors of the leading-edge shear layer, i.e., breakthrough by the crossflow or impingement to the upper wall, are found to determine the flow pattern and influence the entrainment process. The shear layer dynamics are investigated by analogy to a counter-current mixing layer. The mixing layer ratio of the annular purging jet is obtained, suggesting the transition from absolute to convective instability. The infiltration flux into the inner region of the annular purging jet is evaluated, indicating the dominance of the leakage near the upper wall. The performance of the annular purging jet is assessed in terms of the effectiveness, the fraction of the infiltration flux prevented compared with the unshielded condition and is related to the flow unsteadiness. As the velocity ratio increases, the shielding effect is enhanced and the effectiveness of the annular air curtain increases monotonically with decreasing growth rate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信