{"title":"通过工程对流控制液氦中多电子气泡的生长和坍缩","authors":"Dillip Kumar Pradhan, Soutik Sur, Neda Shamim, Vaisakh Vadakkumbatt, Ambarish Ghosh","doi":"10.1007/s10909-025-03307-1","DOIUrl":null,"url":null,"abstract":"<div><p>Vapor-filled multielectron bubbles (MEBs) in liquid helium offer an ideal system for studying two-dimensional electron systems in a curved geometry. In the normal state of the liquid, the bubbles can contain a substantial amount of helium vapor alongside electrons, which in turn affects the surface electron densities. In this work, we experimentally demonstrate control over both the growth and collapse of vapor-filled MEBs in liquid helium-4 by engineering the convective fluid flow within the experimental cell. We believe this simple technique can facilitate tuning the electron density, and thus, future studies on electron phases inside MEBs.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"220 3-6","pages":"270 - 280"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling the Growth and Collapse of Multielectron Bubbles in Liquid Helium by Engineering the Convective Flow\",\"authors\":\"Dillip Kumar Pradhan, Soutik Sur, Neda Shamim, Vaisakh Vadakkumbatt, Ambarish Ghosh\",\"doi\":\"10.1007/s10909-025-03307-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vapor-filled multielectron bubbles (MEBs) in liquid helium offer an ideal system for studying two-dimensional electron systems in a curved geometry. In the normal state of the liquid, the bubbles can contain a substantial amount of helium vapor alongside electrons, which in turn affects the surface electron densities. In this work, we experimentally demonstrate control over both the growth and collapse of vapor-filled MEBs in liquid helium-4 by engineering the convective fluid flow within the experimental cell. We believe this simple technique can facilitate tuning the electron density, and thus, future studies on electron phases inside MEBs.</p></div>\",\"PeriodicalId\":641,\"journal\":{\"name\":\"Journal of Low Temperature Physics\",\"volume\":\"220 3-6\",\"pages\":\"270 - 280\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Temperature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10909-025-03307-1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-025-03307-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Controlling the Growth and Collapse of Multielectron Bubbles in Liquid Helium by Engineering the Convective Flow
Vapor-filled multielectron bubbles (MEBs) in liquid helium offer an ideal system for studying two-dimensional electron systems in a curved geometry. In the normal state of the liquid, the bubbles can contain a substantial amount of helium vapor alongside electrons, which in turn affects the surface electron densities. In this work, we experimentally demonstrate control over both the growth and collapse of vapor-filled MEBs in liquid helium-4 by engineering the convective fluid flow within the experimental cell. We believe this simple technique can facilitate tuning the electron density, and thus, future studies on electron phases inside MEBs.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.