FusNet:通过机器学习解锁分子融合特性

IF 4.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Jiahui Chen, Yuxin Qiu, Wenyao Chen, Hongye Cheng, Xuezhi Duan, Zhiwen Qi, Zhen Song
{"title":"FusNet:通过机器学习解锁分子融合特性","authors":"Jiahui Chen,&nbsp;Yuxin Qiu,&nbsp;Wenyao Chen,&nbsp;Hongye Cheng,&nbsp;Xuezhi Duan,&nbsp;Zhiwen Qi,&nbsp;Zhen Song","doi":"10.1007/s11705-025-2593-7","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate prediction of molecular fusion properties is critical for energy-efficient material design and sustainable process optimization, yet remains challenging due to data scarcity and complex thermodynamic interdependencies. This work introduces machine learning tools to address these gaps by combining expert-curated molecular descriptors with deep learning. By systematically evaluating statistical machine learning algorithms and attention-based architectures, optimized models are identified: a SMILES-augmented Transformer-Convolutional Neural Network for fusion temperature and a graph attention network for fusion enthalpy. Prediction power is further validated experimentally on four structure diverse compounds (<i>γ</i>-butyrolactone, methyl octanoate, <i>N</i>-phenylbenzenesulfonamide, and triethylene glycol dimethyl ether). Interpretability analyses reveal that these models prioritize key structures in molecules: attention in text-based models focuses on key atoms while that in graph models focuses on key chemical bonds, aligning with empirical thermodynamic evidences. By providing rapid, interpretable fusion property predictions, this framework can support the development of low-energy phase-change materials and sustainable solvent systems, advancing data-driven green chemistry.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 9","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FusNet: unlocking molecular fusion properties through machine learning\",\"authors\":\"Jiahui Chen,&nbsp;Yuxin Qiu,&nbsp;Wenyao Chen,&nbsp;Hongye Cheng,&nbsp;Xuezhi Duan,&nbsp;Zhiwen Qi,&nbsp;Zhen Song\",\"doi\":\"10.1007/s11705-025-2593-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate prediction of molecular fusion properties is critical for energy-efficient material design and sustainable process optimization, yet remains challenging due to data scarcity and complex thermodynamic interdependencies. This work introduces machine learning tools to address these gaps by combining expert-curated molecular descriptors with deep learning. By systematically evaluating statistical machine learning algorithms and attention-based architectures, optimized models are identified: a SMILES-augmented Transformer-Convolutional Neural Network for fusion temperature and a graph attention network for fusion enthalpy. Prediction power is further validated experimentally on four structure diverse compounds (<i>γ</i>-butyrolactone, methyl octanoate, <i>N</i>-phenylbenzenesulfonamide, and triethylene glycol dimethyl ether). Interpretability analyses reveal that these models prioritize key structures in molecules: attention in text-based models focuses on key atoms while that in graph models focuses on key chemical bonds, aligning with empirical thermodynamic evidences. By providing rapid, interpretable fusion property predictions, this framework can support the development of low-energy phase-change materials and sustainable solvent systems, advancing data-driven green chemistry.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 9\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-025-2593-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2593-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

分子融合特性的准确预测对于节能材料设计和可持续工艺优化至关重要,但由于数据稀缺和复杂的热力学相互依赖关系,仍然具有挑战性。这项工作引入了机器学习工具,通过将专家策划的分子描述符与深度学习相结合来解决这些差距。通过系统地评估统计机器学习算法和基于注意力的架构,确定了优化模型:用于融合温度的smile -augmented Transformer-Convolutional Neural Network和用于融合焓的graph attention Network。对四种结构不同的化合物(γ-丁内酯、辛酸甲酯、n -苯基苯磺酰胺和三甘醇二甲醚)的预测能力进行了进一步的实验验证。可解释性分析表明,这些模型优先考虑分子中的关键结构:基于文本的模型的注意力集中在关键原子上,而基于图形的模型的注意力集中在关键化学键上,这与经验热力学证据一致。通过提供快速、可解释的聚变特性预测,该框架可以支持低能相变材料和可持续溶剂系统的开发,推进数据驱动的绿色化学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FusNet: unlocking molecular fusion properties through machine learning

Accurate prediction of molecular fusion properties is critical for energy-efficient material design and sustainable process optimization, yet remains challenging due to data scarcity and complex thermodynamic interdependencies. This work introduces machine learning tools to address these gaps by combining expert-curated molecular descriptors with deep learning. By systematically evaluating statistical machine learning algorithms and attention-based architectures, optimized models are identified: a SMILES-augmented Transformer-Convolutional Neural Network for fusion temperature and a graph attention network for fusion enthalpy. Prediction power is further validated experimentally on four structure diverse compounds (γ-butyrolactone, methyl octanoate, N-phenylbenzenesulfonamide, and triethylene glycol dimethyl ether). Interpretability analyses reveal that these models prioritize key structures in molecules: attention in text-based models focuses on key atoms while that in graph models focuses on key chemical bonds, aligning with empirical thermodynamic evidences. By providing rapid, interpretable fusion property predictions, this framework can support the development of low-energy phase-change materials and sustainable solvent systems, advancing data-driven green chemistry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信