Ti3C2Tx MXene光纤热扩散系数的上下限

IF 2.9 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Shengshu Xi, Nan Zhang, Xiaona Huang, Dezhao Huang, Zhaofu Zhang, Yuzheng Guo, Yanan Yue
{"title":"Ti3C2Tx MXene光纤热扩散系数的上下限","authors":"Shengshu Xi,&nbsp;Nan Zhang,&nbsp;Xiaona Huang,&nbsp;Dezhao Huang,&nbsp;Zhaofu Zhang,&nbsp;Yuzheng Guo,&nbsp;Yanan Yue","doi":"10.1007/s10765-025-03605-6","DOIUrl":null,"url":null,"abstract":"<div><p>Transition metal carbides and nitrides (MXenes), a family of two-dimensional materials, exhibit exceptional promise for energy storage applications due to their tunable structural and electrical properties. However, the pronounced adsorption properties inherent to their layered structure complicate the accurate characterization of their thermophysical properties. Here, we systematically investigate the thermal diffusivity of one-dimensional Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene fibers using a transient electrothermal method under controlled electrical currents and vacuum environments. Our results reveal a strong correlation between the electrical and thermal responses of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene fibers during heating cycles. As heating progresses, the rate of voltage rise decreases, and the logarithm of the transient voltage response exhibits a robust linear dependence on time, enabling consistent extraction of thermal diffusivity. The thermal diffusivity fluctuates within experimentally determined upper and lower limits, corresponding to the degree of adsorption and desorption of water molecules, quantified at 3.6 × 10<sup>−5</sup> m<sup>2</sup>·s<sup>−1</sup> and 1.0 × 10<sup>−6</sup> m<sup>2</sup>·s<sup>−1</sup>, respectively. By refining the understanding of MXene’s thermophysical behavior, this work provides critical insights for optimizing their energy applications and advancing materials with variable physical properties.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10765-025-03605-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Upper and Lower Limits of Thermal Diffusivity for Ti3C2Tx MXene Fiber\",\"authors\":\"Shengshu Xi,&nbsp;Nan Zhang,&nbsp;Xiaona Huang,&nbsp;Dezhao Huang,&nbsp;Zhaofu Zhang,&nbsp;Yuzheng Guo,&nbsp;Yanan Yue\",\"doi\":\"10.1007/s10765-025-03605-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transition metal carbides and nitrides (MXenes), a family of two-dimensional materials, exhibit exceptional promise for energy storage applications due to their tunable structural and electrical properties. However, the pronounced adsorption properties inherent to their layered structure complicate the accurate characterization of their thermophysical properties. Here, we systematically investigate the thermal diffusivity of one-dimensional Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene fibers using a transient electrothermal method under controlled electrical currents and vacuum environments. Our results reveal a strong correlation between the electrical and thermal responses of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene fibers during heating cycles. As heating progresses, the rate of voltage rise decreases, and the logarithm of the transient voltage response exhibits a robust linear dependence on time, enabling consistent extraction of thermal diffusivity. The thermal diffusivity fluctuates within experimentally determined upper and lower limits, corresponding to the degree of adsorption and desorption of water molecules, quantified at 3.6 × 10<sup>−5</sup> m<sup>2</sup>·s<sup>−1</sup> and 1.0 × 10<sup>−6</sup> m<sup>2</sup>·s<sup>−1</sup>, respectively. By refining the understanding of MXene’s thermophysical behavior, this work provides critical insights for optimizing their energy applications and advancing materials with variable physical properties.</p></div>\",\"PeriodicalId\":598,\"journal\":{\"name\":\"International Journal of Thermophysics\",\"volume\":\"46 9\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10765-025-03605-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10765-025-03605-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-025-03605-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属碳化物和氮化物(MXenes)是一类二维材料,由于其可调的结构和电性能,在储能应用中表现出非凡的前景。然而,其层状结构固有的明显吸附特性使其热物理性质的准确表征复杂化。本文采用瞬态电热法系统地研究了可控电流和真空环境下一维Ti3C2Tx MXene纤维的热扩散率。我们的研究结果揭示了Ti3C2Tx MXene纤维在加热循环过程中的电响应和热响应之间存在很强的相关性。随着加热的进行,电压上升的速率降低,并且瞬态电压响应的对数对时间表现出鲁棒的线性依赖,从而能够一致地提取热扩散系数。热扩散系数在实验确定的上限和下限内波动,对应于水分子的吸附和解吸程度,分别量化为3.6 × 10−5 m2·s−1和1.0 × 10−6 m2·s−1。通过完善对MXene热物理行为的理解,这项工作为优化其能源应用和推进具有可变物理性质的材料提供了关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper and Lower Limits of Thermal Diffusivity for Ti3C2Tx MXene Fiber

Transition metal carbides and nitrides (MXenes), a family of two-dimensional materials, exhibit exceptional promise for energy storage applications due to their tunable structural and electrical properties. However, the pronounced adsorption properties inherent to their layered structure complicate the accurate characterization of their thermophysical properties. Here, we systematically investigate the thermal diffusivity of one-dimensional Ti3C2Tx MXene fibers using a transient electrothermal method under controlled electrical currents and vacuum environments. Our results reveal a strong correlation between the electrical and thermal responses of Ti3C2Tx MXene fibers during heating cycles. As heating progresses, the rate of voltage rise decreases, and the logarithm of the transient voltage response exhibits a robust linear dependence on time, enabling consistent extraction of thermal diffusivity. The thermal diffusivity fluctuates within experimentally determined upper and lower limits, corresponding to the degree of adsorption and desorption of water molecules, quantified at 3.6 × 10−5 m2·s−1 and 1.0 × 10−6 m2·s−1, respectively. By refining the understanding of MXene’s thermophysical behavior, this work provides critical insights for optimizing their energy applications and advancing materials with variable physical properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信