伊辛铁磁体与非加性熵:平衡与非平衡性质

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Henrique Santos Lima, Constantino Tsallis
{"title":"伊辛铁磁体与非加性熵:平衡与非平衡性质","authors":"Henrique Santos Lima,&nbsp;Constantino Tsallis","doi":"10.1140/epjb/s10051-025-00980-9","DOIUrl":null,"url":null,"abstract":"<p>Some equilibrium and nonequilibrium properties of the one-dimensional nearest-neighbor Ising ferromagnet that are grounded on nonadditive entropies are reviewed. First, we focus on the known fact that the nonadditive entropy <span>\\(S_q\\)</span> for a special value of <i>q</i>, namely <span>\\(q^\\star =\\sqrt{37}-6 \\simeq 0.0828\\)</span>, yields entropic extensivity, thus satisfying the Legendre structure of classical thermodynamics, at the quantum critical point of the spin-1/2 ferromagnetic Ising chain in the presence of an external transverse field. Then we address a well-known issue in phase transitions, namely that, at the critical point, quantities such as the susceptibility and the Grüneisen ratio diverge within Boltzmann–Gibbs statistical mechanics (<span>\\(q=1\\)</span>). Moreover, we show that such thermostatistical quantities diverge for <span>\\(q&gt;q^\\star \\)</span>, vanish for <span>\\(q&lt;q^\\star \\)</span>, and are <i>finite</i> for <span>\\(q=q^\\star \\)</span>. Second, we focus on a transport phenomenon, specifically, the heat transport in a one-dimensional Ising model. We do so by analyzing two classical inertial anisotropic <i>XY</i> models that recover the equilibrium and nonequilibrium properties of the Ising model under the extreme anisotropy limit. In other words, we determine, from first principles, the thermal conductivity behavior of the Ising chain with regard to temperature and lattice size, concluding that the model exhibits normal heat conduction, i.e., it satisfies Fourier’s law.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ising ferromagnet and nonadditive entropies: equilibrium and nonequilibrium properties\",\"authors\":\"Henrique Santos Lima,&nbsp;Constantino Tsallis\",\"doi\":\"10.1140/epjb/s10051-025-00980-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Some equilibrium and nonequilibrium properties of the one-dimensional nearest-neighbor Ising ferromagnet that are grounded on nonadditive entropies are reviewed. First, we focus on the known fact that the nonadditive entropy <span>\\\\(S_q\\\\)</span> for a special value of <i>q</i>, namely <span>\\\\(q^\\\\star =\\\\sqrt{37}-6 \\\\simeq 0.0828\\\\)</span>, yields entropic extensivity, thus satisfying the Legendre structure of classical thermodynamics, at the quantum critical point of the spin-1/2 ferromagnetic Ising chain in the presence of an external transverse field. Then we address a well-known issue in phase transitions, namely that, at the critical point, quantities such as the susceptibility and the Grüneisen ratio diverge within Boltzmann–Gibbs statistical mechanics (<span>\\\\(q=1\\\\)</span>). Moreover, we show that such thermostatistical quantities diverge for <span>\\\\(q&gt;q^\\\\star \\\\)</span>, vanish for <span>\\\\(q&lt;q^\\\\star \\\\)</span>, and are <i>finite</i> for <span>\\\\(q=q^\\\\star \\\\)</span>. Second, we focus on a transport phenomenon, specifically, the heat transport in a one-dimensional Ising model. We do so by analyzing two classical inertial anisotropic <i>XY</i> models that recover the equilibrium and nonequilibrium properties of the Ising model under the extreme anisotropy limit. In other words, we determine, from first principles, the thermal conductivity behavior of the Ising chain with regard to temperature and lattice size, concluding that the model exhibits normal heat conduction, i.e., it satisfies Fourier’s law.</p>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"98 6\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-025-00980-9\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00980-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

讨论了一维近邻伊辛铁磁体基于非加性熵的一些平衡和非平衡性质。首先,我们关注一个已知的事实,即对于一个特殊的q值,即\(q^\star =\sqrt{37}-6 \simeq 0.0828\),非加性熵\(S_q\)产生熵的扩张性,从而满足经典热力学的勒让德结构,在自旋1/2铁磁伊辛链的量子临界点存在一个外部横向场。然后,我们解决了相变中一个众所周知的问题,即,在临界点,在玻尔兹曼-吉布斯统计力学中,诸如磁化率和格拉尼森比之类的量会发散(\(q=1\))。此外,我们表明这些热统计量对于\(q>q^\star \)是发散的,对于\(q<q^\star \)是消失的,对于\(q=q^\star \)是有限的。其次,我们重点研究了一维Ising模型中的输运现象,特别是热输运。我们分析了两个经典的惯性各向异性XY模型,它们在各向异性极限下恢复了Ising模型的平衡和非平衡性质。换句话说,我们从第一性原理确定了与温度和晶格尺寸有关的Ising链的导热行为,得出结论认为该模型表现出正常的热传导,即满足傅里叶定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ising ferromagnet and nonadditive entropies: equilibrium and nonequilibrium properties

Some equilibrium and nonequilibrium properties of the one-dimensional nearest-neighbor Ising ferromagnet that are grounded on nonadditive entropies are reviewed. First, we focus on the known fact that the nonadditive entropy \(S_q\) for a special value of q, namely \(q^\star =\sqrt{37}-6 \simeq 0.0828\), yields entropic extensivity, thus satisfying the Legendre structure of classical thermodynamics, at the quantum critical point of the spin-1/2 ferromagnetic Ising chain in the presence of an external transverse field. Then we address a well-known issue in phase transitions, namely that, at the critical point, quantities such as the susceptibility and the Grüneisen ratio diverge within Boltzmann–Gibbs statistical mechanics (\(q=1\)). Moreover, we show that such thermostatistical quantities diverge for \(q>q^\star \), vanish for \(q<q^\star \), and are finite for \(q=q^\star \). Second, we focus on a transport phenomenon, specifically, the heat transport in a one-dimensional Ising model. We do so by analyzing two classical inertial anisotropic XY models that recover the equilibrium and nonequilibrium properties of the Ising model under the extreme anisotropy limit. In other words, we determine, from first principles, the thermal conductivity behavior of the Ising chain with regard to temperature and lattice size, concluding that the model exhibits normal heat conduction, i.e., it satisfies Fourier’s law.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信