纤维素纳米纤维增强MXene丝网印刷油墨:优化印刷性能和涂层机械性能

IF 4.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Genrui Xu, Shiyi Feng, Ye Feng, Binxia Chen, Zhenming Chen, Peng Li, Canhui Lu, Zehang Zhou
{"title":"纤维素纳米纤维增强MXene丝网印刷油墨:优化印刷性能和涂层机械性能","authors":"Genrui Xu,&nbsp;Shiyi Feng,&nbsp;Ye Feng,&nbsp;Binxia Chen,&nbsp;Zhenming Chen,&nbsp;Peng Li,&nbsp;Canhui Lu,&nbsp;Zehang Zhou","doi":"10.1007/s11705-025-2612-8","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid advancement of flexible electronics creates an urgent demand for high-performance printed electronic materials. MXene-based inks have been widely studied and used for screen-printing electronics, while they usually suffer from poor screen-printability and inadequate mechanical properties of the printed coatings. Therefore, we incorporate 2,2,6,6-tetramethylpiperidinooxy oxidized cellulose nanofibers into MXene ink to regulate its rheology and enhance printability on both porous A4 paper and compact polyethylene terephthalate substrates. The introduction of cellulose enables precise control over the rheology and microstructure of the resultant MXene coatings. Critically, the strong interfacial hydrogen bonding and physical entanglement between cellulose and MXene contribute to the substantial enhancements of the mechanical properties and structural stability of the resultant composite coatings, where a remarkable 9.04-fold increase of hardness and a 1.74-fold increase of Young’s modulus are achieved. The interfacial binding strength between the coating and substrate is also well enhanced with the anchoring of cellulose. This work thereby presents a promising strategy for the design and fabrication of flexible screen-printed electronics.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 11","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellulose nanofiber-enhanced MXene screen-printing inks: optimizing printability and coating mechanical properties\",\"authors\":\"Genrui Xu,&nbsp;Shiyi Feng,&nbsp;Ye Feng,&nbsp;Binxia Chen,&nbsp;Zhenming Chen,&nbsp;Peng Li,&nbsp;Canhui Lu,&nbsp;Zehang Zhou\",\"doi\":\"10.1007/s11705-025-2612-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid advancement of flexible electronics creates an urgent demand for high-performance printed electronic materials. MXene-based inks have been widely studied and used for screen-printing electronics, while they usually suffer from poor screen-printability and inadequate mechanical properties of the printed coatings. Therefore, we incorporate 2,2,6,6-tetramethylpiperidinooxy oxidized cellulose nanofibers into MXene ink to regulate its rheology and enhance printability on both porous A4 paper and compact polyethylene terephthalate substrates. The introduction of cellulose enables precise control over the rheology and microstructure of the resultant MXene coatings. Critically, the strong interfacial hydrogen bonding and physical entanglement between cellulose and MXene contribute to the substantial enhancements of the mechanical properties and structural stability of the resultant composite coatings, where a remarkable 9.04-fold increase of hardness and a 1.74-fold increase of Young’s modulus are achieved. The interfacial binding strength between the coating and substrate is also well enhanced with the anchoring of cellulose. This work thereby presents a promising strategy for the design and fabrication of flexible screen-printed electronics.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 11\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-025-2612-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2612-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

柔性电子的快速发展对高性能印刷电子材料产生了迫切的需求。mxene基油墨在丝网印刷电子产品中得到了广泛的研究和应用,但它们通常存在丝网印刷性能差和印刷涂层机械性能不足的问题。因此,我们将2,2,6,6-四甲基胡椒二氧基氧化纤维素纳米纤维加入到MXene油墨中,以调节其流变性,并提高其在多孔A4纸和紧凑的聚对苯二甲酸乙二醇酯基材上的印刷性。纤维素的引入可以精确控制生成的MXene涂层的流变学和微观结构。重要的是,纤维素和MXene之间强大的界面氢键和物理缠结有助于显著增强复合涂层的力学性能和结构稳定性,其中硬度提高了9.04倍,杨氏模量提高了1.74倍。纤维素的锚定也很好地增强了涂层与基体之间的界面结合强度。因此,这项工作为柔性丝网印刷电子产品的设计和制造提供了一个有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cellulose nanofiber-enhanced MXene screen-printing inks: optimizing printability and coating mechanical properties

The rapid advancement of flexible electronics creates an urgent demand for high-performance printed electronic materials. MXene-based inks have been widely studied and used for screen-printing electronics, while they usually suffer from poor screen-printability and inadequate mechanical properties of the printed coatings. Therefore, we incorporate 2,2,6,6-tetramethylpiperidinooxy oxidized cellulose nanofibers into MXene ink to regulate its rheology and enhance printability on both porous A4 paper and compact polyethylene terephthalate substrates. The introduction of cellulose enables precise control over the rheology and microstructure of the resultant MXene coatings. Critically, the strong interfacial hydrogen bonding and physical entanglement between cellulose and MXene contribute to the substantial enhancements of the mechanical properties and structural stability of the resultant composite coatings, where a remarkable 9.04-fold increase of hardness and a 1.74-fold increase of Young’s modulus are achieved. The interfacial binding strength between the coating and substrate is also well enhanced with the anchoring of cellulose. This work thereby presents a promising strategy for the design and fabrication of flexible screen-printed electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信