{"title":"晶粒结构在Al金属- \\(\\text {Al}_{90}\\text {Sm}_{10}\\)金属玻璃纳米层合材料冲击和剥落行为中的作用","authors":"S. Mishra, K. Vijay Reddy, S. Pal","doi":"10.1007/s00193-025-01231-7","DOIUrl":null,"url":null,"abstract":"<div><p>Molecular-dynamics-based simulations have been carried out for crystalline Al-<span>\\(\\text {Al}_{90}\\text {Sm}_{10}\\)</span> metallic glass (MG) nanolaminates with different grain structures corresponding to varying values of shock intensities to analyze the structural evolution during shock-wave loading and spallation behavior of the nanolaminates. A transition from elastic–plastic behavior occurs in nanocrystalline NC-MG nanolaminates with increasing values of shock intensities when the shock traverses from the crystalline end to the MG end. On the other hand, an overdriven elastic front is observed for all values of shock intensities in columnar-grained CG-MG nanolaminates. When the shock-wave direction is reversed, a plastic wave dominates the shock profiles irrespective of the grain structures and shock intensity values. Adaptive common neighbor analysis (a-CNA) and dislocation analysis reveal that grain boundary-mediated plasticity is dominant in NC-MG nanolaminate specimens, while dislocation-mediated plasticity predominately governs the shock deformation behavior in CG-MG nanolaminates. The reflection of the rarefaction wave generated at the crystalline–amorphous interface aids in stacking fault generation in NC-MG nanolaminates but does not cause any structural changes in CG-MG nanolaminates. The spallation behavior of the nanolaminate specimens is significantly influenced by the grain structures and the presence of the free surfaces. The population of perfect icosahedral clusters <span>\\(\\langle 0\\,0\\,12\\,0\\rangle \\)</span> decreases during the passage of shock as determined using Voronoi cluster analysis.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"35 4","pages":"361 - 380"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of grain architecture in shock behavior and spalling behavior of Al metal-\\\\(\\\\text {Al}_{90}\\\\text {Sm}_{10}\\\\) metallic glass nanolaminates\",\"authors\":\"S. Mishra, K. Vijay Reddy, S. Pal\",\"doi\":\"10.1007/s00193-025-01231-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Molecular-dynamics-based simulations have been carried out for crystalline Al-<span>\\\\(\\\\text {Al}_{90}\\\\text {Sm}_{10}\\\\)</span> metallic glass (MG) nanolaminates with different grain structures corresponding to varying values of shock intensities to analyze the structural evolution during shock-wave loading and spallation behavior of the nanolaminates. A transition from elastic–plastic behavior occurs in nanocrystalline NC-MG nanolaminates with increasing values of shock intensities when the shock traverses from the crystalline end to the MG end. On the other hand, an overdriven elastic front is observed for all values of shock intensities in columnar-grained CG-MG nanolaminates. When the shock-wave direction is reversed, a plastic wave dominates the shock profiles irrespective of the grain structures and shock intensity values. Adaptive common neighbor analysis (a-CNA) and dislocation analysis reveal that grain boundary-mediated plasticity is dominant in NC-MG nanolaminate specimens, while dislocation-mediated plasticity predominately governs the shock deformation behavior in CG-MG nanolaminates. The reflection of the rarefaction wave generated at the crystalline–amorphous interface aids in stacking fault generation in NC-MG nanolaminates but does not cause any structural changes in CG-MG nanolaminates. The spallation behavior of the nanolaminate specimens is significantly influenced by the grain structures and the presence of the free surfaces. The population of perfect icosahedral clusters <span>\\\\(\\\\langle 0\\\\,0\\\\,12\\\\,0\\\\rangle \\\\)</span> decreases during the passage of shock as determined using Voronoi cluster analysis.</p></div>\",\"PeriodicalId\":775,\"journal\":{\"name\":\"Shock Waves\",\"volume\":\"35 4\",\"pages\":\"361 - 380\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00193-025-01231-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-025-01231-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Role of grain architecture in shock behavior and spalling behavior of Al metal-\(\text {Al}_{90}\text {Sm}_{10}\) metallic glass nanolaminates
Molecular-dynamics-based simulations have been carried out for crystalline Al-\(\text {Al}_{90}\text {Sm}_{10}\) metallic glass (MG) nanolaminates with different grain structures corresponding to varying values of shock intensities to analyze the structural evolution during shock-wave loading and spallation behavior of the nanolaminates. A transition from elastic–plastic behavior occurs in nanocrystalline NC-MG nanolaminates with increasing values of shock intensities when the shock traverses from the crystalline end to the MG end. On the other hand, an overdriven elastic front is observed for all values of shock intensities in columnar-grained CG-MG nanolaminates. When the shock-wave direction is reversed, a plastic wave dominates the shock profiles irrespective of the grain structures and shock intensity values. Adaptive common neighbor analysis (a-CNA) and dislocation analysis reveal that grain boundary-mediated plasticity is dominant in NC-MG nanolaminate specimens, while dislocation-mediated plasticity predominately governs the shock deformation behavior in CG-MG nanolaminates. The reflection of the rarefaction wave generated at the crystalline–amorphous interface aids in stacking fault generation in NC-MG nanolaminates but does not cause any structural changes in CG-MG nanolaminates. The spallation behavior of the nanolaminate specimens is significantly influenced by the grain structures and the presence of the free surfaces. The population of perfect icosahedral clusters \(\langle 0\,0\,12\,0\rangle \) decreases during the passage of shock as determined using Voronoi cluster analysis.
期刊介绍:
Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization.
The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine.
Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community.
The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.