{"title":"相对论性拉格朗日从非相对论性乘法拉格朗日的出现","authors":"Kittikun Surawuttinack, Suppanat Supanyo, Sikarin Yoo-Kong","doi":"10.1007/s10701-025-00874-x","DOIUrl":null,"url":null,"abstract":"<div><p>The multiplicative Lagrangian and Hamiltonian introduce an additional parameter that, despite its variation, results in identical equations of motion as those derived from the standard Lagrangian. This intriguing property becomes even more striking in the case of a free particle. By manipulating the parameter and integrating out, the statistical average of the multiplicative Lagrangian and Hamiltonian naturally arises. Astonishingly, from this statistical viewpoint, the relativistic Lagrangian and Hamiltonian emerge with remarkable elegance. On the action level, this formalism unveils a deeper connection: the spacetime of Einstein’s theory reveals itself from a statistical perspective through the action associated with the multiplicative Lagrangian. This suggests that the multiplicative Lagrangian/Hamiltonian framework offers a profound and beautiful foundation, one that reveals the underlying unity between classical and relativistic descriptions in a way that transcends traditional formulations. In essence, the multiplicative approach introduces a richer and more intricate structure to our understanding of physics, bridging the gap between different theoretical realms through a statistical perspective.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Emergence of the Relativistic Lagrangian from the Non-Relativistic Multiplicative Lagrangian\",\"authors\":\"Kittikun Surawuttinack, Suppanat Supanyo, Sikarin Yoo-Kong\",\"doi\":\"10.1007/s10701-025-00874-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The multiplicative Lagrangian and Hamiltonian introduce an additional parameter that, despite its variation, results in identical equations of motion as those derived from the standard Lagrangian. This intriguing property becomes even more striking in the case of a free particle. By manipulating the parameter and integrating out, the statistical average of the multiplicative Lagrangian and Hamiltonian naturally arises. Astonishingly, from this statistical viewpoint, the relativistic Lagrangian and Hamiltonian emerge with remarkable elegance. On the action level, this formalism unveils a deeper connection: the spacetime of Einstein’s theory reveals itself from a statistical perspective through the action associated with the multiplicative Lagrangian. This suggests that the multiplicative Lagrangian/Hamiltonian framework offers a profound and beautiful foundation, one that reveals the underlying unity between classical and relativistic descriptions in a way that transcends traditional formulations. In essence, the multiplicative approach introduces a richer and more intricate structure to our understanding of physics, bridging the gap between different theoretical realms through a statistical perspective.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":\"55 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-025-00874-x\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-025-00874-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The Emergence of the Relativistic Lagrangian from the Non-Relativistic Multiplicative Lagrangian
The multiplicative Lagrangian and Hamiltonian introduce an additional parameter that, despite its variation, results in identical equations of motion as those derived from the standard Lagrangian. This intriguing property becomes even more striking in the case of a free particle. By manipulating the parameter and integrating out, the statistical average of the multiplicative Lagrangian and Hamiltonian naturally arises. Astonishingly, from this statistical viewpoint, the relativistic Lagrangian and Hamiltonian emerge with remarkable elegance. On the action level, this formalism unveils a deeper connection: the spacetime of Einstein’s theory reveals itself from a statistical perspective through the action associated with the multiplicative Lagrangian. This suggests that the multiplicative Lagrangian/Hamiltonian framework offers a profound and beautiful foundation, one that reveals the underlying unity between classical and relativistic descriptions in a way that transcends traditional formulations. In essence, the multiplicative approach introduces a richer and more intricate structure to our understanding of physics, bridging the gap between different theoretical realms through a statistical perspective.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.