金属间化合物体系的团簇自组织:K3、K4和K6团簇——Li28Cu4Si8-oP40、La12Rh12Al16-oP40和Ca8Pt12Sn20-oP40晶体结构自组装的前体

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, CERAMICS
V. Ya. Shevchenko, G. D. Ilyushin
{"title":"金属间化合物体系的团簇自组织:K3、K4和K6团簇——Li28Cu4Si8-oP40、La12Rh12Al16-oP40和Ca8Pt12Sn20-oP40晶体结构自组装的前体","authors":"V. Ya. Shevchenko,&nbsp;G. D. Ilyushin","doi":"10.1134/S1087659624601151","DOIUrl":null,"url":null,"abstract":"<p>Using computer methods (the ToposPro software package), a combinatorial-topological analysis and modeling of the self-assembly of Li<sub>28</sub>Cu<sub>4</sub>Si<sub>8</sub>-<i>oP</i>40 (<i>a</i> = 7.969 Å, <i>b</i> = 4.449 Å, <i>c</i> = 17.244 Å, <i>V</i> = 611.46 Å<sup>3</sup>), La<sub>12</sub>Rh<sub>12</sub>Al<sub>16</sub>-<i>oP</i>40 (<i>a</i> = 26.949Å, <i>b</i> = 4.218Å, <i>c</i> = 7.267 Å, <i>V</i> = 826.05 Å<sup>3</sup>), and Ca<sub>8</sub>Pt<sub>12</sub>Sn<sub>20</sub>-<i>oP</i>40 (<i>a</i> = 27.701 Å, <i>b</i> = 4.614 Å, <i>c</i> = 9.371 Å, <i>V</i> = 1198.02 Å<sup>3</sup>) crystalline structures with the <i>Pnma</i> space group are carried out<i>.</i> For Li<sub>28</sub>Cu<sub>4</sub>Si<sub>8</sub>-<i>oP</i>40, the self-assembly of the crystal structure with the participation of supraclusters-trimers from <i>K</i>6(4a) = 0@6(Li<sub>4</sub>Cu<sub>2</sub>) clusters, two clusters <i>K</i>6(8d) = 0@6 (CuLi<sub>5</sub>), and Si spacer atoms is considered. For La<sub>12</sub>Rh<sub>12</sub>Al<sub>16</sub>-<i>oP</i>40, the self-assemblies of the crystal structure with the participation of <i>K</i>3(8d) = 0@3(LaRhAl) clusters and <i>K</i>6(4a) = 0@6(La<sub>2</sub>Rh<sub>2</sub>Al<sub>2</sub>) clusters from the linked LaRhAl clusters and <i>K</i>4(8d) = 0@4(LaRhAl<sub>2</sub>) clusters are considered. For Ca<sub>8</sub>Pt<sub>12</sub>Sn<sub>20</sub>-<i>oP</i>40, the self-assembly of the crystal structure from clusters-precursors in the form of the <i>K</i>6 = 0@6(CaSn<sub>3</sub>Pt<sub>2</sub>) double tetrahedra and <i>K</i>4 = 0@4(CaSn<sub>2</sub>Pt) tetrahedra is considered. The symmetry and topological code of the processes of the self-assembly of Li<sub>28</sub>Cu<sub>4</sub>Si<sub>8</sub>-<i>oP</i>40, La<sub>12</sub>Rh<sub>12</sub>Al<sub>16</sub>-<i>oP</i>40, and Ca<sub>8</sub>Pt<sub>12</sub>Sn<sub>20</sub>-<i>oP</i>40 from <i>K</i>3, <i>K</i>4, and <i>K</i>6 clusters-precursors are reconstructed in the following form: primary chain → layer → framework.</p>","PeriodicalId":580,"journal":{"name":"Glass Physics and Chemistry","volume":"51 1","pages":"15 - 23"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster Self-Organization of Intermetallic Systems: K3, K4, and K6 Clusters-Precursors for the Self-Assembly of Li28Cu4Si8-oP40, La12Rh12Al16-oP40, and Ca8Pt12Sn20-oP40 Crystal Structures\",\"authors\":\"V. Ya. Shevchenko,&nbsp;G. D. Ilyushin\",\"doi\":\"10.1134/S1087659624601151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using computer methods (the ToposPro software package), a combinatorial-topological analysis and modeling of the self-assembly of Li<sub>28</sub>Cu<sub>4</sub>Si<sub>8</sub>-<i>oP</i>40 (<i>a</i> = 7.969 Å, <i>b</i> = 4.449 Å, <i>c</i> = 17.244 Å, <i>V</i> = 611.46 Å<sup>3</sup>), La<sub>12</sub>Rh<sub>12</sub>Al<sub>16</sub>-<i>oP</i>40 (<i>a</i> = 26.949Å, <i>b</i> = 4.218Å, <i>c</i> = 7.267 Å, <i>V</i> = 826.05 Å<sup>3</sup>), and Ca<sub>8</sub>Pt<sub>12</sub>Sn<sub>20</sub>-<i>oP</i>40 (<i>a</i> = 27.701 Å, <i>b</i> = 4.614 Å, <i>c</i> = 9.371 Å, <i>V</i> = 1198.02 Å<sup>3</sup>) crystalline structures with the <i>Pnma</i> space group are carried out<i>.</i> For Li<sub>28</sub>Cu<sub>4</sub>Si<sub>8</sub>-<i>oP</i>40, the self-assembly of the crystal structure with the participation of supraclusters-trimers from <i>K</i>6(4a) = 0@6(Li<sub>4</sub>Cu<sub>2</sub>) clusters, two clusters <i>K</i>6(8d) = 0@6 (CuLi<sub>5</sub>), and Si spacer atoms is considered. For La<sub>12</sub>Rh<sub>12</sub>Al<sub>16</sub>-<i>oP</i>40, the self-assemblies of the crystal structure with the participation of <i>K</i>3(8d) = 0@3(LaRhAl) clusters and <i>K</i>6(4a) = 0@6(La<sub>2</sub>Rh<sub>2</sub>Al<sub>2</sub>) clusters from the linked LaRhAl clusters and <i>K</i>4(8d) = 0@4(LaRhAl<sub>2</sub>) clusters are considered. For Ca<sub>8</sub>Pt<sub>12</sub>Sn<sub>20</sub>-<i>oP</i>40, the self-assembly of the crystal structure from clusters-precursors in the form of the <i>K</i>6 = 0@6(CaSn<sub>3</sub>Pt<sub>2</sub>) double tetrahedra and <i>K</i>4 = 0@4(CaSn<sub>2</sub>Pt) tetrahedra is considered. The symmetry and topological code of the processes of the self-assembly of Li<sub>28</sub>Cu<sub>4</sub>Si<sub>8</sub>-<i>oP</i>40, La<sub>12</sub>Rh<sub>12</sub>Al<sub>16</sub>-<i>oP</i>40, and Ca<sub>8</sub>Pt<sub>12</sub>Sn<sub>20</sub>-<i>oP</i>40 from <i>K</i>3, <i>K</i>4, and <i>K</i>6 clusters-precursors are reconstructed in the following form: primary chain → layer → framework.</p>\",\"PeriodicalId\":580,\"journal\":{\"name\":\"Glass Physics and Chemistry\",\"volume\":\"51 1\",\"pages\":\"15 - 23\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glass Physics and Chemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1087659624601151\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass Physics and Chemistry","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1087659624601151","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

使用计算机的方法(ToposPro软件包),combinatorial-topological分析和建模的自组装Li28Cu4Si8-oP40 (a = 7.969 a, b = 4.449 a, c = 17.244 V = 611.46 A3), La12Rh12Al16-oP40 (a = 26.949 a, b = 4.218 a, c = 7.267 V = 826.05 A3),和Ca8Pt12Sn20-oP40 (a = 27.701 a, b = 4.614 a, c = 9.371 V = 1198.02 A3)晶体结构与Pnma空间组织进行。对于Li28Cu4Si8-oP40,考虑了K6(4a) = 0@6(Li4Cu2)团簇、两个团簇K6(8d) = 0@6(CuLi5)和Si间隔原子参与的超簇三聚体晶体结构的自组装。对于La12Rh12Al16-oP40,考虑了由连接的LaRhAl团簇和K4(8d) = 0@4(LaRhAl2)团簇组成的K3(8d) = 0@3(LaRhAl)团簇和K6(4a) = 0@6(La2Rh2Al2)团簇参与的晶体结构的自组装。对于Ca8Pt12Sn20-oP40,考虑了簇-前体自组装晶体结构的形式为K6 = 0@6(CaSn3Pt2)双四面体和K4 = 0@4(CaSn2Pt)四面体。从K3、K4和K6簇-前体中重构Li28Cu4Si8-oP40、La12Rh12Al16-oP40和Ca8Pt12Sn20-oP40自组装过程的对称性和拓扑编码为:主链→层→框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cluster Self-Organization of Intermetallic Systems: K3, K4, and K6 Clusters-Precursors for the Self-Assembly of Li28Cu4Si8-oP40, La12Rh12Al16-oP40, and Ca8Pt12Sn20-oP40 Crystal Structures

Cluster Self-Organization of Intermetallic Systems: K3, K4, and K6 Clusters-Precursors for the Self-Assembly of Li28Cu4Si8-oP40, La12Rh12Al16-oP40, and Ca8Pt12Sn20-oP40 Crystal Structures

Using computer methods (the ToposPro software package), a combinatorial-topological analysis and modeling of the self-assembly of Li28Cu4Si8-oP40 (a = 7.969 Å, b = 4.449 Å, c = 17.244 Å, V = 611.46 Å3), La12Rh12Al16-oP40 (a = 26.949Å, b = 4.218Å, c = 7.267 Å, V = 826.05 Å3), and Ca8Pt12Sn20-oP40 (a = 27.701 Å, b = 4.614 Å, c = 9.371 Å, V = 1198.02 Å3) crystalline structures with the Pnma space group are carried out. For Li28Cu4Si8-oP40, the self-assembly of the crystal structure with the participation of supraclusters-trimers from K6(4a) = 0@6(Li4Cu2) clusters, two clusters K6(8d) = 0@6 (CuLi5), and Si spacer atoms is considered. For La12Rh12Al16-oP40, the self-assemblies of the crystal structure with the participation of K3(8d) = 0@3(LaRhAl) clusters and K6(4a) = 0@6(La2Rh2Al2) clusters from the linked LaRhAl clusters and K4(8d) = 0@4(LaRhAl2) clusters are considered. For Ca8Pt12Sn20-oP40, the self-assembly of the crystal structure from clusters-precursors in the form of the K6 = 0@6(CaSn3Pt2) double tetrahedra and K4 = 0@4(CaSn2Pt) tetrahedra is considered. The symmetry and topological code of the processes of the self-assembly of Li28Cu4Si8-oP40, La12Rh12Al16-oP40, and Ca8Pt12Sn20-oP40 from K3, K4, and K6 clusters-precursors are reconstructed in the following form: primary chain → layer → framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glass Physics and Chemistry
Glass Physics and Chemistry 工程技术-材料科学:硅酸盐
CiteScore
1.20
自引率
14.30%
发文量
46
审稿时长
6-12 weeks
期刊介绍: Glass Physics and Chemistry presents results of research on the inorganic and physical chemistry of glass, ceramics, nanoparticles, nanocomposites, and high-temperature oxides and coatings. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信