Xing Zhang, Juqiang Feng, Feng Cai, Kaifeng Huang, Shunli Wang
{"title":"结合信号处理和优化机器学习方法的锂离子电池健康状态估计模型","authors":"Xing Zhang, Juqiang Feng, Feng Cai, Kaifeng Huang, Shunli Wang","doi":"10.1007/s11708-024-0969-x","DOIUrl":null,"url":null,"abstract":"<div><p>An accurate assessment of the state of health (SOH) is the cornerstone for guaranteeing the long-term stable operation of electrical equipment. However, the noise the data carries during cyclic aging poses a severe challenge to the accuracy of SOH estimation and the generalization ability of the model. To this end, this paper proposed a novel SOH estimation model for lithium-ion batteries that incorporates advanced signal-processing techniques and optimized machine-learning strategies. The model employs a whale optimization algorithm (WOA) to seek the optimal parameter combination (K, <i>α</i>) for the variational modal decomposition (VMD) method to ensure that the signals are accurately decomposed into different modes representing the SOH of batteries. Then, the excellent local feature extraction capability of the convolutional neural network (CNN) was utilized to obtain the critical features of each modal of SOH. Finally, the support vector machine (SVM) was selected as the final SOH estimation regressor based on its generalization ability and efficient performance on small sample datasets. The method proposed was validated on a two-class publicly available aging dataset of lithium-ion batteries containing different temperatures, discharge rates, and discharge depths. The results show that the WOA-VMD-based data processing technique effectively solves the interference problem of cyclic aging data noise on SOH estimation. The CNN-SVM optimized machine learning method significantly improves the accuracy of SOH estimation. Compared with traditional techniques, the fused algorithm achieves significant results in solving the interference of data noise, improving the accuracy of SOH estimation, and enhancing the generalization ability.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 3","pages":"348 - 364"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel state of health estimation model for lithium-ion batteries incorporating signal processing and optimized machine learning methods\",\"authors\":\"Xing Zhang, Juqiang Feng, Feng Cai, Kaifeng Huang, Shunli Wang\",\"doi\":\"10.1007/s11708-024-0969-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An accurate assessment of the state of health (SOH) is the cornerstone for guaranteeing the long-term stable operation of electrical equipment. However, the noise the data carries during cyclic aging poses a severe challenge to the accuracy of SOH estimation and the generalization ability of the model. To this end, this paper proposed a novel SOH estimation model for lithium-ion batteries that incorporates advanced signal-processing techniques and optimized machine-learning strategies. The model employs a whale optimization algorithm (WOA) to seek the optimal parameter combination (K, <i>α</i>) for the variational modal decomposition (VMD) method to ensure that the signals are accurately decomposed into different modes representing the SOH of batteries. Then, the excellent local feature extraction capability of the convolutional neural network (CNN) was utilized to obtain the critical features of each modal of SOH. Finally, the support vector machine (SVM) was selected as the final SOH estimation regressor based on its generalization ability and efficient performance on small sample datasets. The method proposed was validated on a two-class publicly available aging dataset of lithium-ion batteries containing different temperatures, discharge rates, and discharge depths. The results show that the WOA-VMD-based data processing technique effectively solves the interference problem of cyclic aging data noise on SOH estimation. The CNN-SVM optimized machine learning method significantly improves the accuracy of SOH estimation. Compared with traditional techniques, the fused algorithm achieves significant results in solving the interference of data noise, improving the accuracy of SOH estimation, and enhancing the generalization ability.</p></div>\",\"PeriodicalId\":570,\"journal\":{\"name\":\"Frontiers in Energy\",\"volume\":\"19 3\",\"pages\":\"348 - 364\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11708-024-0969-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-024-0969-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A novel state of health estimation model for lithium-ion batteries incorporating signal processing and optimized machine learning methods
An accurate assessment of the state of health (SOH) is the cornerstone for guaranteeing the long-term stable operation of electrical equipment. However, the noise the data carries during cyclic aging poses a severe challenge to the accuracy of SOH estimation and the generalization ability of the model. To this end, this paper proposed a novel SOH estimation model for lithium-ion batteries that incorporates advanced signal-processing techniques and optimized machine-learning strategies. The model employs a whale optimization algorithm (WOA) to seek the optimal parameter combination (K, α) for the variational modal decomposition (VMD) method to ensure that the signals are accurately decomposed into different modes representing the SOH of batteries. Then, the excellent local feature extraction capability of the convolutional neural network (CNN) was utilized to obtain the critical features of each modal of SOH. Finally, the support vector machine (SVM) was selected as the final SOH estimation regressor based on its generalization ability and efficient performance on small sample datasets. The method proposed was validated on a two-class publicly available aging dataset of lithium-ion batteries containing different temperatures, discharge rates, and discharge depths. The results show that the WOA-VMD-based data processing technique effectively solves the interference problem of cyclic aging data noise on SOH estimation. The CNN-SVM optimized machine learning method significantly improves the accuracy of SOH estimation. Compared with traditional techniques, the fused algorithm achieves significant results in solving the interference of data noise, improving the accuracy of SOH estimation, and enhancing the generalization ability.
期刊介绍:
Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy.
Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues.
Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research.
High-quality papers are solicited in, but are not limited to the following areas:
-Fundamental energy science
-Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency
-Energy and the environment, including pollution control, energy efficiency and climate change
-Energy economics, strategy and policy
-Emerging energy issue