新的变指数弱赫兹空间和一些次线性算子的有界性

IF 0.6 3区 数学 Q3 MATHEMATICS
K. Matsuoka
{"title":"新的变指数弱赫兹空间和一些次线性算子的有界性","authors":"K. Matsuoka","doi":"10.1007/s10474-025-01542-2","DOIUrl":null,"url":null,"abstract":"<div><p>In the investigations of the boundedness of some sublinear operators, which do not hold the strong estimates, the researchers treat the weak estimates. In this occasion for the Herz spaces <span>\\(\\dot{K}_q^{\\alpha,p}({\\mathbb{R}}^n)\\)</span>, in order to obtain more precise estimates \nthan the weak estimates, the author [40] introduced the new “weak” Herz spaces <span>\\(\\widetilde{W}\\dot{K}_q^{\\alpha,p}({\\mathbb{R}}^n)\\)</span> and showed the new “weak” boundedness on <span>\\(\\dot{K}_q^{\\alpha,p}({\\mathbb{R}}^n)\\)</span>. In this paper, we will extend the above new “weak” estimates to the sublinear operators satisfying another size condition. Further, we will extend these results on the Herz spaces with constant exponents <span>\\(\\dot{K }_q^{\\alpha,p}({\\mathbb{R}}^n)\\)</span> to one’s on the Herz spaces with variable exponent <span>\\(\\dot{K}_{q(\\cdot)}^{\\alpha,p}({\\mathbb{R}}^n)\\)</span>. </p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"176 1","pages":"86 - 110"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New weak Herz spaces with variable exponent and the boundedness of some sublinear operators\",\"authors\":\"K. Matsuoka\",\"doi\":\"10.1007/s10474-025-01542-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the investigations of the boundedness of some sublinear operators, which do not hold the strong estimates, the researchers treat the weak estimates. In this occasion for the Herz spaces <span>\\\\(\\\\dot{K}_q^{\\\\alpha,p}({\\\\mathbb{R}}^n)\\\\)</span>, in order to obtain more precise estimates \\nthan the weak estimates, the author [40] introduced the new “weak” Herz spaces <span>\\\\(\\\\widetilde{W}\\\\dot{K}_q^{\\\\alpha,p}({\\\\mathbb{R}}^n)\\\\)</span> and showed the new “weak” boundedness on <span>\\\\(\\\\dot{K}_q^{\\\\alpha,p}({\\\\mathbb{R}}^n)\\\\)</span>. In this paper, we will extend the above new “weak” estimates to the sublinear operators satisfying another size condition. Further, we will extend these results on the Herz spaces with constant exponents <span>\\\\(\\\\dot{K }_q^{\\\\alpha,p}({\\\\mathbb{R}}^n)\\\\)</span> to one’s on the Herz spaces with variable exponent <span>\\\\(\\\\dot{K}_{q(\\\\cdot)}^{\\\\alpha,p}({\\\\mathbb{R}}^n)\\\\)</span>. </p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"176 1\",\"pages\":\"86 - 110\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-025-01542-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01542-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在研究一类不含强估计的次线性算子的有界性时,研究人员对弱估计进行了处理。在这种情况下,对于赫兹空间\(\dot{K}_q^{\alpha,p}({\mathbb{R}}^n)\),为了获得比弱估计更精确的估计,作者[40]引入了新的“弱”赫兹空间\(\widetilde{W}\dot{K}_q^{\alpha,p}({\mathbb{R}}^n)\),并在\(\dot{K}_q^{\alpha,p}({\mathbb{R}}^n)\)上展示了新的“弱”有界性。在本文中,我们将上述新的“弱”估计推广到满足另一个大小条件的次线性算子。进一步,我们将在常指数赫兹空间\(\dot{K }_q^{\alpha,p}({\mathbb{R}}^n)\)上的这些结果推广到变指数赫兹空间\(\dot{K}_{q(\cdot)}^{\alpha,p}({\mathbb{R}}^n)\)上的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New weak Herz spaces with variable exponent and the boundedness of some sublinear operators

In the investigations of the boundedness of some sublinear operators, which do not hold the strong estimates, the researchers treat the weak estimates. In this occasion for the Herz spaces \(\dot{K}_q^{\alpha,p}({\mathbb{R}}^n)\), in order to obtain more precise estimates than the weak estimates, the author [40] introduced the new “weak” Herz spaces \(\widetilde{W}\dot{K}_q^{\alpha,p}({\mathbb{R}}^n)\) and showed the new “weak” boundedness on \(\dot{K}_q^{\alpha,p}({\mathbb{R}}^n)\). In this paper, we will extend the above new “weak” estimates to the sublinear operators satisfying another size condition. Further, we will extend these results on the Herz spaces with constant exponents \(\dot{K }_q^{\alpha,p}({\mathbb{R}}^n)\) to one’s on the Herz spaces with variable exponent \(\dot{K}_{q(\cdot)}^{\alpha,p}({\mathbb{R}}^n)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信