炸药与钢板界面影响的数值研究

IF 1.8 4区 工程技术 Q3 MECHANICS
J. Liu, Z. Y. Sun, J. W. Yin, F. G. Zhang
{"title":"炸药与钢板界面影响的数值研究","authors":"J. Liu,&nbsp;Z. Y. Sun,&nbsp;J. W. Yin,&nbsp;F. G. Zhang","doi":"10.1007/s00193-025-01230-8","DOIUrl":null,"url":null,"abstract":"<div><p>The interface between explosives and steel plates can vary in the clearance of a gap or the presence of a cushion, and the dimension of the interface region can also differ. These variations in the types of interface may affect the dynamic loading and energy absorption of steel plates driven by detonation. To investigate this issue, we conducted a numerical study on the influence of different interface types and thicknesses. Initially, we designed a simulation model of a detonation driving a steel plate, with one half featuring clearance between the explosive and the steel, and the other half filled with a cushion. We then carried out simulations to analyze the influence of varying clearance and cushion thickness on the dynamic loading and energy absorption of the steel plate. The results indicate that a small-thickness clearance between explosive and steel can increase the kinetic energy of the steel plate, and there may be an optimal clearance thickness to maximize the energy absorption of the steel plate. As the clearance thickness is increased, the first loading pressure in the steel decreases, and the spallation and recompression processes in the steel gradually transform into an approximately uniform loading process without fracture. On the other hand, filling the clearance with a cushion has a negative effect on the energy absorption of the steel plate, and the kinetic energy of the steel plate decreases nearly linearly with an increase of the cushion thickness. As the cushion thickness is increased, the first loading pressure in the steel decreases less, and the dynamic behaviors of spallation and recompression may occur. Lastly, we briefly discuss interfaces with uneven thickness, which should be strictly controlled to prevent the occurrence of unexpected phenomena.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"35 4","pages":"381 - 393"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study of the influence of interfaces between explosives and steel plates\",\"authors\":\"J. Liu,&nbsp;Z. Y. Sun,&nbsp;J. W. Yin,&nbsp;F. G. Zhang\",\"doi\":\"10.1007/s00193-025-01230-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The interface between explosives and steel plates can vary in the clearance of a gap or the presence of a cushion, and the dimension of the interface region can also differ. These variations in the types of interface may affect the dynamic loading and energy absorption of steel plates driven by detonation. To investigate this issue, we conducted a numerical study on the influence of different interface types and thicknesses. Initially, we designed a simulation model of a detonation driving a steel plate, with one half featuring clearance between the explosive and the steel, and the other half filled with a cushion. We then carried out simulations to analyze the influence of varying clearance and cushion thickness on the dynamic loading and energy absorption of the steel plate. The results indicate that a small-thickness clearance between explosive and steel can increase the kinetic energy of the steel plate, and there may be an optimal clearance thickness to maximize the energy absorption of the steel plate. As the clearance thickness is increased, the first loading pressure in the steel decreases, and the spallation and recompression processes in the steel gradually transform into an approximately uniform loading process without fracture. On the other hand, filling the clearance with a cushion has a negative effect on the energy absorption of the steel plate, and the kinetic energy of the steel plate decreases nearly linearly with an increase of the cushion thickness. As the cushion thickness is increased, the first loading pressure in the steel decreases less, and the dynamic behaviors of spallation and recompression may occur. Lastly, we briefly discuss interfaces with uneven thickness, which should be strictly controlled to prevent the occurrence of unexpected phenomena.</p></div>\",\"PeriodicalId\":775,\"journal\":{\"name\":\"Shock Waves\",\"volume\":\"35 4\",\"pages\":\"381 - 393\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00193-025-01230-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-025-01230-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

炸药和钢板之间的界面可以因间隙或缓冲的存在而变化,并且界面区域的尺寸也可以不同。这些界面类型的变化会影响爆轰作用下钢板的动载荷和吸能。为了研究这一问题,我们对不同界面类型和厚度的影响进行了数值研究。最初,我们设计了一个模拟爆炸驱动钢板的模型,其中一半是炸药与钢板之间的间隙,另一半是缓冲垫。通过仿真分析了不同间隙和垫层厚度对钢板动载荷和吸能的影响。结果表明:小厚度的炸药与钢板间隙可以增加钢板的动能,并且可能存在一个最优间隙厚度,使钢板的能量吸收最大化。随着间隙厚度的增加,钢中的首次加载压力减小,钢中的散裂和再压缩过程逐渐转变为近似均匀加载过程而不发生断裂。另一方面,在间隙内填充垫层对钢板的能量吸收有负面影响,随着垫层厚度的增加,钢板的动能几乎呈线性下降。随着垫层厚度的增加,钢的首次加载压力减小幅度较小,可能出现开裂和再压缩的动力行为。最后简要讨论了厚度不均匀的界面,应严格控制厚度不均匀,防止出现意外现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical study of the influence of interfaces between explosives and steel plates

The interface between explosives and steel plates can vary in the clearance of a gap or the presence of a cushion, and the dimension of the interface region can also differ. These variations in the types of interface may affect the dynamic loading and energy absorption of steel plates driven by detonation. To investigate this issue, we conducted a numerical study on the influence of different interface types and thicknesses. Initially, we designed a simulation model of a detonation driving a steel plate, with one half featuring clearance between the explosive and the steel, and the other half filled with a cushion. We then carried out simulations to analyze the influence of varying clearance and cushion thickness on the dynamic loading and energy absorption of the steel plate. The results indicate that a small-thickness clearance between explosive and steel can increase the kinetic energy of the steel plate, and there may be an optimal clearance thickness to maximize the energy absorption of the steel plate. As the clearance thickness is increased, the first loading pressure in the steel decreases, and the spallation and recompression processes in the steel gradually transform into an approximately uniform loading process without fracture. On the other hand, filling the clearance with a cushion has a negative effect on the energy absorption of the steel plate, and the kinetic energy of the steel plate decreases nearly linearly with an increase of the cushion thickness. As the cushion thickness is increased, the first loading pressure in the steel decreases less, and the dynamic behaviors of spallation and recompression may occur. Lastly, we briefly discuss interfaces with uneven thickness, which should be strictly controlled to prevent the occurrence of unexpected phenomena.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Shock Waves
Shock Waves 物理-力学
CiteScore
4.10
自引率
9.10%
发文量
41
审稿时长
17.4 months
期刊介绍: Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization. The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine. Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community. The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信