Yafeng Chen, Zhihao Lan, Shanjun Liang, Siu-kei Calvin Cheung, Lei Fan, Jie Zhu, Zhongqing Su
{"title":"由依赖于山谷的朗道体模式实现的灵活的大面积声能传输的可视化","authors":"Yafeng Chen, Zhihao Lan, Shanjun Liang, Siu-kei Calvin Cheung, Lei Fan, Jie Zhu, Zhongqing Su","doi":"10.1007/s11433-025-2694-5","DOIUrl":null,"url":null,"abstract":"<div><p>While conventional topological states can be used for robust acoustic energy transportation, the energy capacity is limited and the propagation route is also heavily constrained. In this work, we show that Landau levels in acoustic systems can offer exciting new avenues for transporting acoustic energies. In particular, we realize valley-dependent Landau levels in a two-dimensional inhomogeneous acoustic system induced by synthetic in-plane magnetic fields. The band diagrams of the 0th- and 1st-order Landau levels are experimentally measured and their robustness of propagation against defects is also experimentally validated. Promising ways for acoustic energy transportation enabled by the Landau levels, such as large-area transportation and snake-like transportation are experimentally demonstrated. Importantly, we achieve topological propagation along an arbitrary prescribed path using unique features of the valley-dependent Landau levels for the first time in experiment, which is a significant advancement beyond what can be achieved using conventional acoustic topological states based on valley/spin Hall physics. These remarkable features open up promising opportunities for developing novel acoustic devices to realize robust, broadband, and flexible large-area acoustic energy conveying.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 9","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization of flexible large-area acoustic energy conveying enabled by valley-dependent Landau bulk modes\",\"authors\":\"Yafeng Chen, Zhihao Lan, Shanjun Liang, Siu-kei Calvin Cheung, Lei Fan, Jie Zhu, Zhongqing Su\",\"doi\":\"10.1007/s11433-025-2694-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>While conventional topological states can be used for robust acoustic energy transportation, the energy capacity is limited and the propagation route is also heavily constrained. In this work, we show that Landau levels in acoustic systems can offer exciting new avenues for transporting acoustic energies. In particular, we realize valley-dependent Landau levels in a two-dimensional inhomogeneous acoustic system induced by synthetic in-plane magnetic fields. The band diagrams of the 0th- and 1st-order Landau levels are experimentally measured and their robustness of propagation against defects is also experimentally validated. Promising ways for acoustic energy transportation enabled by the Landau levels, such as large-area transportation and snake-like transportation are experimentally demonstrated. Importantly, we achieve topological propagation along an arbitrary prescribed path using unique features of the valley-dependent Landau levels for the first time in experiment, which is a significant advancement beyond what can be achieved using conventional acoustic topological states based on valley/spin Hall physics. These remarkable features open up promising opportunities for developing novel acoustic devices to realize robust, broadband, and flexible large-area acoustic energy conveying.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"68 9\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-025-2694-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-025-2694-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Visualization of flexible large-area acoustic energy conveying enabled by valley-dependent Landau bulk modes
While conventional topological states can be used for robust acoustic energy transportation, the energy capacity is limited and the propagation route is also heavily constrained. In this work, we show that Landau levels in acoustic systems can offer exciting new avenues for transporting acoustic energies. In particular, we realize valley-dependent Landau levels in a two-dimensional inhomogeneous acoustic system induced by synthetic in-plane magnetic fields. The band diagrams of the 0th- and 1st-order Landau levels are experimentally measured and their robustness of propagation against defects is also experimentally validated. Promising ways for acoustic energy transportation enabled by the Landau levels, such as large-area transportation and snake-like transportation are experimentally demonstrated. Importantly, we achieve topological propagation along an arbitrary prescribed path using unique features of the valley-dependent Landau levels for the first time in experiment, which is a significant advancement beyond what can be achieved using conventional acoustic topological states based on valley/spin Hall physics. These remarkable features open up promising opportunities for developing novel acoustic devices to realize robust, broadband, and flexible large-area acoustic energy conveying.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.