溶液粘度控制的相分离和聚集动力学使高效、环保的槽模涂层有机太阳能电池成为可能

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chang Liu  (, ), Zhaozhao Bi  (, ), Ke Wang  (, ), Jingming Xin  (, ), Jingwei Xue  (, ), Nuo Chen  (, ), Linlin An  (, ), Ying Chen  (, ), Jiangang Liu  (, ), Brian A. Collins, Long Jiang  (, ), Wei Ma  (, )
{"title":"溶液粘度控制的相分离和聚集动力学使高效、环保的槽模涂层有机太阳能电池成为可能","authors":"Chang Liu \n (,&nbsp;),&nbsp;Zhaozhao Bi \n (,&nbsp;),&nbsp;Ke Wang \n (,&nbsp;),&nbsp;Jingming Xin \n (,&nbsp;),&nbsp;Jingwei Xue \n (,&nbsp;),&nbsp;Nuo Chen \n (,&nbsp;),&nbsp;Linlin An \n (,&nbsp;),&nbsp;Ying Chen \n (,&nbsp;),&nbsp;Jiangang Liu \n (,&nbsp;),&nbsp;Brian A. Collins,&nbsp;Long Jiang \n (,&nbsp;),&nbsp;Wei Ma \n (,&nbsp;)","doi":"10.1007/s40843-025-3439-7","DOIUrl":null,"url":null,"abstract":"<div><p>Slot-die coating with halogen-free solvents is a promising scalable fabrication strategy for organic solar cells (OSCs). However, the complex interplay between long-time-scale solute diffusion and microstructural evolution during the coating process remains poorly understood, limiting further optimization of morphology and device performance. In this study, we elucidate the critical role of solution viscosity in regulating phase separation and aggregation kinetics. Specifically, lower solution viscosity enhances solute diffusion, accelerating molecular aggregation while suppressing liquid-liquid phase separation (LLPS). Notably, we observe that in three different systems with varying crystallinity and immiscibility (PM6:Y6, PTQ10:Y6, and D18:Y6), the optimal processing conditions for peak device efficiency consistently correspond to a nearly identical solution viscosity (∼0.8 mPa s), despite variations in optimal processing temperatures. <i>In situ</i> characterizations reveal that at this viscosity, all three systems exhibit constrained LLPS and rapid molecular aggregation, promoting the formation of finely structured, continuous nanoscale domains. These findings establish solution viscosity as a universal governing parameter for morphology control in printed active layers. By providing a fundamental framework for understanding viscosity-mediated phase separation, this work offers valuable insights for advancing high-throughput, environmentally friendly printing techniques for high-efficiency OSCs.</p></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 8","pages":"2799 - 2808"},"PeriodicalIF":7.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution viscosity-governed phase separation and aggregation kinetics enable high-efficiency, eco-friendly slot-die coated organic solar cells\",\"authors\":\"Chang Liu \\n (,&nbsp;),&nbsp;Zhaozhao Bi \\n (,&nbsp;),&nbsp;Ke Wang \\n (,&nbsp;),&nbsp;Jingming Xin \\n (,&nbsp;),&nbsp;Jingwei Xue \\n (,&nbsp;),&nbsp;Nuo Chen \\n (,&nbsp;),&nbsp;Linlin An \\n (,&nbsp;),&nbsp;Ying Chen \\n (,&nbsp;),&nbsp;Jiangang Liu \\n (,&nbsp;),&nbsp;Brian A. Collins,&nbsp;Long Jiang \\n (,&nbsp;),&nbsp;Wei Ma \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-025-3439-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Slot-die coating with halogen-free solvents is a promising scalable fabrication strategy for organic solar cells (OSCs). However, the complex interplay between long-time-scale solute diffusion and microstructural evolution during the coating process remains poorly understood, limiting further optimization of morphology and device performance. In this study, we elucidate the critical role of solution viscosity in regulating phase separation and aggregation kinetics. Specifically, lower solution viscosity enhances solute diffusion, accelerating molecular aggregation while suppressing liquid-liquid phase separation (LLPS). Notably, we observe that in three different systems with varying crystallinity and immiscibility (PM6:Y6, PTQ10:Y6, and D18:Y6), the optimal processing conditions for peak device efficiency consistently correspond to a nearly identical solution viscosity (∼0.8 mPa s), despite variations in optimal processing temperatures. <i>In situ</i> characterizations reveal that at this viscosity, all three systems exhibit constrained LLPS and rapid molecular aggregation, promoting the formation of finely structured, continuous nanoscale domains. These findings establish solution viscosity as a universal governing parameter for morphology control in printed active layers. By providing a fundamental framework for understanding viscosity-mediated phase separation, this work offers valuable insights for advancing high-throughput, environmentally friendly printing techniques for high-efficiency OSCs.</p></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 8\",\"pages\":\"2799 - 2808\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-025-3439-7\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3439-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

无卤溶剂槽模涂层是一种很有前途的可扩展的有机太阳能电池(OSCs)制造策略。然而,在涂层过程中,长时间尺度溶质扩散和微观结构演变之间的复杂相互作用仍然知之甚少,这限制了进一步优化形貌和器件性能。在这项研究中,我们阐明了溶液粘度在调节相分离和聚集动力学中的关键作用。具体来说,较低的溶液粘度增强了溶质扩散,加速了分子聚集,同时抑制了液-液相分离(LLPS)。值得注意的是,我们观察到,在三种不同的结晶度和不混相体系(PM6:Y6, PTQ10:Y6和D18:Y6)中,尽管最佳加工温度不同,但峰值器件效率的最佳加工条件始终对应于几乎相同的溶液粘度(~ 0.8 mPa s)。原位表征表明,在这种粘度下,这三种体系都表现出受限的LLPS和快速的分子聚集,促进了结构精细、连续的纳米级结构域的形成。这些发现确立了溶液粘度是印刷活性层形貌控制的普遍控制参数。通过提供一个理解粘度介导相分离的基本框架,这项工作为推进高通量、环保的高效OSCs印刷技术提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution viscosity-governed phase separation and aggregation kinetics enable high-efficiency, eco-friendly slot-die coated organic solar cells

Slot-die coating with halogen-free solvents is a promising scalable fabrication strategy for organic solar cells (OSCs). However, the complex interplay between long-time-scale solute diffusion and microstructural evolution during the coating process remains poorly understood, limiting further optimization of morphology and device performance. In this study, we elucidate the critical role of solution viscosity in regulating phase separation and aggregation kinetics. Specifically, lower solution viscosity enhances solute diffusion, accelerating molecular aggregation while suppressing liquid-liquid phase separation (LLPS). Notably, we observe that in three different systems with varying crystallinity and immiscibility (PM6:Y6, PTQ10:Y6, and D18:Y6), the optimal processing conditions for peak device efficiency consistently correspond to a nearly identical solution viscosity (∼0.8 mPa s), despite variations in optimal processing temperatures. In situ characterizations reveal that at this viscosity, all three systems exhibit constrained LLPS and rapid molecular aggregation, promoting the formation of finely structured, continuous nanoscale domains. These findings establish solution viscosity as a universal governing parameter for morphology control in printed active layers. By providing a fundamental framework for understanding viscosity-mediated phase separation, this work offers valuable insights for advancing high-throughput, environmentally friendly printing techniques for high-efficiency OSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信