定向渗流模型临界值下界的更新

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Olivier Couronné
{"title":"定向渗流模型临界值下界的更新","authors":"Olivier Couronné","doi":"10.1007/s10955-025-03466-1","DOIUrl":null,"url":null,"abstract":"<div><p>We obtain new lower bounds on the critical points for various models of oriented percolation. The method relies on establishing a stochastic domination of the percolation processes by multitype Galton-Watson trees. This approach can be applied to classical bond and site oriented percolation on <span>\\(\\mathbb {Z}^2\\)</span>, as well as to other lattices, such as inhomogeneous ones, and in three dimensions.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Update on Lower Bounds for the Critical Values of Oriented Percolation Models\",\"authors\":\"Olivier Couronné\",\"doi\":\"10.1007/s10955-025-03466-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We obtain new lower bounds on the critical points for various models of oriented percolation. The method relies on establishing a stochastic domination of the percolation processes by multitype Galton-Watson trees. This approach can be applied to classical bond and site oriented percolation on <span>\\\\(\\\\mathbb {Z}^2\\\\)</span>, as well as to other lattices, such as inhomogeneous ones, and in three dimensions.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 6\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03466-1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03466-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了各种定向渗流模型的临界点的新下界。该方法依赖于建立多类型高尔顿-沃森树对渗透过程的随机控制。这种方法可以应用于\(\mathbb {Z}^2\)上的经典键和面向位置的渗透,以及其他晶格,如非均匀晶格和三维晶格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Update on Lower Bounds for the Critical Values of Oriented Percolation Models

An Update on Lower Bounds for the Critical Values of Oriented Percolation Models

We obtain new lower bounds on the critical points for various models of oriented percolation. The method relies on establishing a stochastic domination of the percolation processes by multitype Galton-Watson trees. This approach can be applied to classical bond and site oriented percolation on \(\mathbb {Z}^2\), as well as to other lattices, such as inhomogeneous ones, and in three dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信