增强镁基植入物生物活性和耐腐蚀性的生物激发细胞膜样杂化涂层

IF 11 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hong-Lei Yue, Zhi-Chao Liu, Zi-Yu Yan, Guan-Qi Liu, Liang-Wei Chen, Jian-Hua Zhu, Jian-Min Han
{"title":"增强镁基植入物生物活性和耐腐蚀性的生物激发细胞膜样杂化涂层","authors":"Hong-Lei Yue,&nbsp;Zhi-Chao Liu,&nbsp;Zi-Yu Yan,&nbsp;Guan-Qi Liu,&nbsp;Liang-Wei Chen,&nbsp;Jian-Hua Zhu,&nbsp;Jian-Min Han","doi":"10.1007/s12598-025-03323-w","DOIUrl":null,"url":null,"abstract":"<div><p>Magnesium (Mg)-based biometals are promising candidates for next-generation biodegradable implants in bone regeneration. However, their rapid biocorrosion in physiological environments necessitates protective coatings to enhance corrosion resistance and osteogenesis. Conventional hydrophobic modifications, while effective in mitigating corrosion, often impair biological responses, hindering tissue integration and bone regeneration. Inspired by the architecture of cell membranes, we developed a novel layered octacalcium phosphate (OCP) coating intercalated with a hydrophobic alkyl-phosphate-surfactant bilayer, imparting Mg biometals with enhanced bioactivity and resistance to biocorrosion. Additionally, an MgF<sub>2</sub> transition layer with a mechanically interlocking architecture is fabricated via an in situ growth approach, ensuring the long-term structural integrity and interface stability of the hybrid coating. Compared with conventional coatings, the resulting intercalated organic/inorganic hybrid coatings exhibit exceptional mechanical robustness, remarkable corrosion resistance, and bioactivities conducive to cellular adhesion and proliferation<i>. </i>In vivo implantation tests further revealed a significantly reduced corrosion depth (~ 1.1 μm), minimal inflammatory response, and reduced fibrous encapsulation (~ 65.2 μm), demonstrating its clinical potential. This work pioneers a bioinspired strategy for multifunctional inorganic/organic hybrid coatings, advancing the clinical application of Mg-based implants in osteogenesis.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 7","pages":"4898 - 4912"},"PeriodicalIF":11.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired cell membrane-like hybrid coating for enhanced bioactivity and corrosion resistance of magnesium-based implants\",\"authors\":\"Hong-Lei Yue,&nbsp;Zhi-Chao Liu,&nbsp;Zi-Yu Yan,&nbsp;Guan-Qi Liu,&nbsp;Liang-Wei Chen,&nbsp;Jian-Hua Zhu,&nbsp;Jian-Min Han\",\"doi\":\"10.1007/s12598-025-03323-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Magnesium (Mg)-based biometals are promising candidates for next-generation biodegradable implants in bone regeneration. However, their rapid biocorrosion in physiological environments necessitates protective coatings to enhance corrosion resistance and osteogenesis. Conventional hydrophobic modifications, while effective in mitigating corrosion, often impair biological responses, hindering tissue integration and bone regeneration. Inspired by the architecture of cell membranes, we developed a novel layered octacalcium phosphate (OCP) coating intercalated with a hydrophobic alkyl-phosphate-surfactant bilayer, imparting Mg biometals with enhanced bioactivity and resistance to biocorrosion. Additionally, an MgF<sub>2</sub> transition layer with a mechanically interlocking architecture is fabricated via an in situ growth approach, ensuring the long-term structural integrity and interface stability of the hybrid coating. Compared with conventional coatings, the resulting intercalated organic/inorganic hybrid coatings exhibit exceptional mechanical robustness, remarkable corrosion resistance, and bioactivities conducive to cellular adhesion and proliferation<i>. </i>In vivo implantation tests further revealed a significantly reduced corrosion depth (~ 1.1 μm), minimal inflammatory response, and reduced fibrous encapsulation (~ 65.2 μm), demonstrating its clinical potential. This work pioneers a bioinspired strategy for multifunctional inorganic/organic hybrid coatings, advancing the clinical application of Mg-based implants in osteogenesis.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"44 7\",\"pages\":\"4898 - 4912\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-025-03323-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03323-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

镁基生物金属材料是下一代骨再生生物可降解植入物的理想候选材料。然而,它们在生理环境中快速的生物腐蚀需要保护涂层来增强耐腐蚀性和成骨性。传统的疏水修饰虽然能有效减轻腐蚀,但往往会损害生物反应,阻碍组织整合和骨再生。受细胞膜结构的启发,我们开发了一种新型的层状磷酸八钙(OCP)涂层,嵌入疏水性烷基磷酸盐表面活性剂双分子层,赋予Mg生物金属增强的生物活性和抗生物腐蚀能力。此外,通过原位生长方法制备了具有机械互锁结构的MgF2过渡层,确保了混合涂层的长期结构完整性和界面稳定性。与传统涂层相比,所得到的插层有机/无机杂化涂层具有优异的机械坚固性,显著的耐腐蚀性,以及有利于细胞粘附和增殖的生物活性。体内植入试验进一步显示,腐蚀深度显著降低(~ 1.1 μm),炎症反应最小,纤维包被减少(~ 65.2 μm),证明了其临床潜力。这项工作开创了多功能无机/有机混合涂层的生物启发策略,推进了镁基植入物在成骨中的临床应用。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioinspired cell membrane-like hybrid coating for enhanced bioactivity and corrosion resistance of magnesium-based implants

Magnesium (Mg)-based biometals are promising candidates for next-generation biodegradable implants in bone regeneration. However, their rapid biocorrosion in physiological environments necessitates protective coatings to enhance corrosion resistance and osteogenesis. Conventional hydrophobic modifications, while effective in mitigating corrosion, often impair biological responses, hindering tissue integration and bone regeneration. Inspired by the architecture of cell membranes, we developed a novel layered octacalcium phosphate (OCP) coating intercalated with a hydrophobic alkyl-phosphate-surfactant bilayer, imparting Mg biometals with enhanced bioactivity and resistance to biocorrosion. Additionally, an MgF2 transition layer with a mechanically interlocking architecture is fabricated via an in situ growth approach, ensuring the long-term structural integrity and interface stability of the hybrid coating. Compared with conventional coatings, the resulting intercalated organic/inorganic hybrid coatings exhibit exceptional mechanical robustness, remarkable corrosion resistance, and bioactivities conducive to cellular adhesion and proliferation. In vivo implantation tests further revealed a significantly reduced corrosion depth (~ 1.1 μm), minimal inflammatory response, and reduced fibrous encapsulation (~ 65.2 μm), demonstrating its clinical potential. This work pioneers a bioinspired strategy for multifunctional inorganic/organic hybrid coatings, advancing the clinical application of Mg-based implants in osteogenesis.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信