M. L. Casasin-Garcia, S. G. Mitchell, N. Espallargas
{"title":"钨基多金属氧盐离子液体作为低粘度PAO的润滑添加剂:钢的成分和组织对边界润滑性能的影响","authors":"M. L. Casasin-Garcia, S. G. Mitchell, N. Espallargas","doi":"10.1007/s11249-025-02033-9","DOIUrl":null,"url":null,"abstract":"<div><p>The development of environmentally acceptable lubricants and lubricant additives has become a focal point within tribology due to increasing regulatory and sustainability demands. In this context, low-viscosity lubricants are gaining attention for their potential to reduce energy losses. However, their performance under a boundary lubrication regime, where thinner oil film build-up is present, requires more efficient boundary additives. This work evaluates a polyoxometalate-ionic liquid (POM-IL) as a multifunctional boundary additive in a low-viscosity polyalphaolefin-based lubricant, comparing its performance to zinc dialkyldithiophosphate (ZDDP) and a halogen-containing ionic liquid (IL). Tribological tests on AISI 316L stainless steel and AISI 52100 bearing steel revealed that while ZDDP showed substrate-independent adsorption and tribological performance, the IL-based additives had substrate-dependent behaviour. Strong chemisorption was consistent for both IL-based additives, yet their anti-wear and friction-reducing properties differed, showing evidence for the presence of a combined mechanism that includes both strong adsorption and tribochemical reactions. Additionally, the interaction between POM-ILs’ negatively charged surfaces, W atoms, and Cr(III) in 316L was identified as a key factor in their performance. Notably, significant work-hardening was observed in 316L lubricated with POM-IL-containing blends, further enhancing its anti-wear properties. These findings emphasize the role of substrate chemistry in boundary lubricant additive performance in low-viscosity lubricants, offering insights for the development of more efficient multifunctional boundary lubrication solutions.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"73 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-025-02033-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Tungsten-Based Polyoxometalate-Ionic Liquid as Lubricant Additive for Low-Viscosity PAO: Effect of Steel Composition and Microstructure on the Boundary Lubricating Performance\",\"authors\":\"M. L. Casasin-Garcia, S. G. Mitchell, N. Espallargas\",\"doi\":\"10.1007/s11249-025-02033-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of environmentally acceptable lubricants and lubricant additives has become a focal point within tribology due to increasing regulatory and sustainability demands. In this context, low-viscosity lubricants are gaining attention for their potential to reduce energy losses. However, their performance under a boundary lubrication regime, where thinner oil film build-up is present, requires more efficient boundary additives. This work evaluates a polyoxometalate-ionic liquid (POM-IL) as a multifunctional boundary additive in a low-viscosity polyalphaolefin-based lubricant, comparing its performance to zinc dialkyldithiophosphate (ZDDP) and a halogen-containing ionic liquid (IL). Tribological tests on AISI 316L stainless steel and AISI 52100 bearing steel revealed that while ZDDP showed substrate-independent adsorption and tribological performance, the IL-based additives had substrate-dependent behaviour. Strong chemisorption was consistent for both IL-based additives, yet their anti-wear and friction-reducing properties differed, showing evidence for the presence of a combined mechanism that includes both strong adsorption and tribochemical reactions. Additionally, the interaction between POM-ILs’ negatively charged surfaces, W atoms, and Cr(III) in 316L was identified as a key factor in their performance. Notably, significant work-hardening was observed in 316L lubricated with POM-IL-containing blends, further enhancing its anti-wear properties. These findings emphasize the role of substrate chemistry in boundary lubricant additive performance in low-viscosity lubricants, offering insights for the development of more efficient multifunctional boundary lubrication solutions.</p></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":\"73 3\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11249-025-02033-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-025-02033-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-025-02033-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Tungsten-Based Polyoxometalate-Ionic Liquid as Lubricant Additive for Low-Viscosity PAO: Effect of Steel Composition and Microstructure on the Boundary Lubricating Performance
The development of environmentally acceptable lubricants and lubricant additives has become a focal point within tribology due to increasing regulatory and sustainability demands. In this context, low-viscosity lubricants are gaining attention for their potential to reduce energy losses. However, their performance under a boundary lubrication regime, where thinner oil film build-up is present, requires more efficient boundary additives. This work evaluates a polyoxometalate-ionic liquid (POM-IL) as a multifunctional boundary additive in a low-viscosity polyalphaolefin-based lubricant, comparing its performance to zinc dialkyldithiophosphate (ZDDP) and a halogen-containing ionic liquid (IL). Tribological tests on AISI 316L stainless steel and AISI 52100 bearing steel revealed that while ZDDP showed substrate-independent adsorption and tribological performance, the IL-based additives had substrate-dependent behaviour. Strong chemisorption was consistent for both IL-based additives, yet their anti-wear and friction-reducing properties differed, showing evidence for the presence of a combined mechanism that includes both strong adsorption and tribochemical reactions. Additionally, the interaction between POM-ILs’ negatively charged surfaces, W atoms, and Cr(III) in 316L was identified as a key factor in their performance. Notably, significant work-hardening was observed in 316L lubricated with POM-IL-containing blends, further enhancing its anti-wear properties. These findings emphasize the role of substrate chemistry in boundary lubricant additive performance in low-viscosity lubricants, offering insights for the development of more efficient multifunctional boundary lubrication solutions.
期刊介绍:
Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.