{"title":"用于可穿戴和植入式生物电子学的纳米材料酶生物燃料电池","authors":"Jingyao Wang, Jiwei Ma, Hongfei Cheng","doi":"10.1007/s11708-025-0992-6","DOIUrl":null,"url":null,"abstract":"<div><p>Enzymatic biofuel cells (EBFCs), which generate electricity through electrochemical reactions between metabolites and O<sub>2</sub>/air, are considered a promising alternative power source for wearable and implantable bioelectronics. However, the main challenges facing EBFCs are the poor stability of enzymes and the low electron transfer efficiency between enzymes and electrodes. To enhance the efficiency of EBFCs, researchers have been focusing on the development of novel functional nanomaterials. This mini-review first introduces the working principles and types of EBFCs, highlighting the key roles of nanomaterials, such as enzyme immobilization and stabilization, promotion of electron transfer and catalytic activity. It then summarizes the recent advancements in their application in wearable and implantable devices. Finally, it explores future research direction and the potential of high-performance EBFCs for practical applications.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 3","pages":"283 - 299"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanomaterials-based enzymatic biofuel cells for wearable and implantable bioelectronics\",\"authors\":\"Jingyao Wang, Jiwei Ma, Hongfei Cheng\",\"doi\":\"10.1007/s11708-025-0992-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enzymatic biofuel cells (EBFCs), which generate electricity through electrochemical reactions between metabolites and O<sub>2</sub>/air, are considered a promising alternative power source for wearable and implantable bioelectronics. However, the main challenges facing EBFCs are the poor stability of enzymes and the low electron transfer efficiency between enzymes and electrodes. To enhance the efficiency of EBFCs, researchers have been focusing on the development of novel functional nanomaterials. This mini-review first introduces the working principles and types of EBFCs, highlighting the key roles of nanomaterials, such as enzyme immobilization and stabilization, promotion of electron transfer and catalytic activity. It then summarizes the recent advancements in their application in wearable and implantable devices. Finally, it explores future research direction and the potential of high-performance EBFCs for practical applications.</p></div>\",\"PeriodicalId\":570,\"journal\":{\"name\":\"Frontiers in Energy\",\"volume\":\"19 3\",\"pages\":\"283 - 299\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11708-025-0992-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-025-0992-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Nanomaterials-based enzymatic biofuel cells for wearable and implantable bioelectronics
Enzymatic biofuel cells (EBFCs), which generate electricity through electrochemical reactions between metabolites and O2/air, are considered a promising alternative power source for wearable and implantable bioelectronics. However, the main challenges facing EBFCs are the poor stability of enzymes and the low electron transfer efficiency between enzymes and electrodes. To enhance the efficiency of EBFCs, researchers have been focusing on the development of novel functional nanomaterials. This mini-review first introduces the working principles and types of EBFCs, highlighting the key roles of nanomaterials, such as enzyme immobilization and stabilization, promotion of electron transfer and catalytic activity. It then summarizes the recent advancements in their application in wearable and implantable devices. Finally, it explores future research direction and the potential of high-performance EBFCs for practical applications.
期刊介绍:
Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy.
Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues.
Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research.
High-quality papers are solicited in, but are not limited to the following areas:
-Fundamental energy science
-Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency
-Energy and the environment, including pollution control, energy efficiency and climate change
-Energy economics, strategy and policy
-Emerging energy issue