完整的\( A\mathcal {V}\) -仿射空间的模块

IF 0.6 4区 数学 Q3 MATHEMATICS
Yuly Billig, Henrique Rocha
{"title":"完整的\\( A\\mathcal {V}\\) -仿射空间的模块","authors":"Yuly Billig,&nbsp;Henrique Rocha","doi":"10.1007/s10468-025-10342-9","DOIUrl":null,"url":null,"abstract":"<div><p>We study the growth of representations of the Lie algebra of vector fields on the affine space that admit a compatible action of the polynomial algebra. We establish the Bernstein inequality for these representations, enabling us to focus on modules with minimal growth, known as holonomic modules. We show that simple holonomic modules are isomorphic to the tensor product of a holonomic module over the Weyl algebra and a finite-dimensional <span>\\( \\mathfrak {gl}_n \\)</span>-module. We also prove that holonomic modules have a finite length and that the representation map associated with a holonomic module is a differential operator. Finally, we present examples illustrating our results.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"28 3","pages":"755 - 766"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holonomic \\\\( A\\\\mathcal {V}\\\\)-Modules for the Affine Space\",\"authors\":\"Yuly Billig,&nbsp;Henrique Rocha\",\"doi\":\"10.1007/s10468-025-10342-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the growth of representations of the Lie algebra of vector fields on the affine space that admit a compatible action of the polynomial algebra. We establish the Bernstein inequality for these representations, enabling us to focus on modules with minimal growth, known as holonomic modules. We show that simple holonomic modules are isomorphic to the tensor product of a holonomic module over the Weyl algebra and a finite-dimensional <span>\\\\( \\\\mathfrak {gl}_n \\\\)</span>-module. We also prove that holonomic modules have a finite length and that the representation map associated with a holonomic module is a differential operator. Finally, we present examples illustrating our results.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"28 3\",\"pages\":\"755 - 766\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-025-10342-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-025-10342-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了在仿射空间上允许多项式代数相容作用的向量场李代数表示的增长。我们为这些表示建立了Bernstein不等式,使我们能够关注最小增长的模块,称为完整模块。我们证明了简单完整模与Weyl代数上的完整模与有限维\( \mathfrak {gl}_n \) -模的张量积同构。证明了完整模具有有限长度,并且与完整模相关联的表示映射是一个微分算子。最后,我们给出了一些例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holonomic \( A\mathcal {V}\)-Modules for the Affine Space

We study the growth of representations of the Lie algebra of vector fields on the affine space that admit a compatible action of the polynomial algebra. We establish the Bernstein inequality for these representations, enabling us to focus on modules with minimal growth, known as holonomic modules. We show that simple holonomic modules are isomorphic to the tensor product of a holonomic module over the Weyl algebra and a finite-dimensional \( \mathfrak {gl}_n \)-module. We also prove that holonomic modules have a finite length and that the representation map associated with a holonomic module is a differential operator. Finally, we present examples illustrating our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信