上的分数泊松随机场 \(\mathbb {R}^2_+\)

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Kuldeep Kumar Kataria, Pradeep Vishwakarma
{"title":"上的分数泊松随机场 \\(\\mathbb {R}^2_+\\)","authors":"Kuldeep Kumar Kataria,&nbsp;Pradeep Vishwakarma","doi":"10.1007/s10955-025-03465-2","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a fractional Poisson random field (FPRF) on positive plane. It is defined as a process whose one dimensional distribution is the solution of a system of fractional partial differential equations. A time-changed representation for the FPRF is given in terms of the composition of Poisson random field with a bivariate random process. Some integrals of the FPRF are introduced and studied. Using the Adomian decomposition method, a closed form expression for its probability mass function is obtained in terms of the generalized Wright function. Some results related to the order statistics of random numbers of random variables are presented. Also, we introduce a generalization of Poisson random field on <span>\\(\\mathbb {R}^d_+\\)</span>, <span>\\(d\\ge 1\\)</span> which reduces to the Poisson random field in a special case. Later, we define the compound fractional Poisson random field via FPRF. Moreover, a generalized version of it on <span>\\(\\mathbb {R}^d_+\\)</span> is discussed.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Poisson Random Fields on \\\\(\\\\mathbb {R}^2_+\\\\)\",\"authors\":\"Kuldeep Kumar Kataria,&nbsp;Pradeep Vishwakarma\",\"doi\":\"10.1007/s10955-025-03465-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a fractional Poisson random field (FPRF) on positive plane. It is defined as a process whose one dimensional distribution is the solution of a system of fractional partial differential equations. A time-changed representation for the FPRF is given in terms of the composition of Poisson random field with a bivariate random process. Some integrals of the FPRF are introduced and studied. Using the Adomian decomposition method, a closed form expression for its probability mass function is obtained in terms of the generalized Wright function. Some results related to the order statistics of random numbers of random variables are presented. Also, we introduce a generalization of Poisson random field on <span>\\\\(\\\\mathbb {R}^d_+\\\\)</span>, <span>\\\\(d\\\\ge 1\\\\)</span> which reduces to the Poisson random field in a special case. Later, we define the compound fractional Poisson random field via FPRF. Moreover, a generalized version of it on <span>\\\\(\\\\mathbb {R}^d_+\\\\)</span> is discussed.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 6\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03465-2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03465-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

考虑正平面上的分数阶泊松随机场(FPRF)。它被定义为一个过程,其一维分布是分数阶偏微分方程组的解。利用泊松随机场与二元随机过程的组合,给出了FPRF的时变表示。介绍并研究了FPRF的一些积分。利用Adomian分解方法,得到了其概率质量函数用广义Wright函数表示的封闭形式。给出了一些关于随机变量随机数的序统计量的结果。同时,在\(\mathbb {R}^d_+\), \(d\ge 1\)上对泊松随机场进行了推广,在特殊情况下将其简化为泊松随机场。然后,我们用FPRF定义了复合分数阶泊松随机场。此外,还讨论了它在\(\mathbb {R}^d_+\)上的广义版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fractional Poisson Random Fields on \(\mathbb {R}^2_+\)

Fractional Poisson Random Fields on \(\mathbb {R}^2_+\)

We consider a fractional Poisson random field (FPRF) on positive plane. It is defined as a process whose one dimensional distribution is the solution of a system of fractional partial differential equations. A time-changed representation for the FPRF is given in terms of the composition of Poisson random field with a bivariate random process. Some integrals of the FPRF are introduced and studied. Using the Adomian decomposition method, a closed form expression for its probability mass function is obtained in terms of the generalized Wright function. Some results related to the order statistics of random numbers of random variables are presented. Also, we introduce a generalization of Poisson random field on \(\mathbb {R}^d_+\), \(d\ge 1\) which reduces to the Poisson random field in a special case. Later, we define the compound fractional Poisson random field via FPRF. Moreover, a generalized version of it on \(\mathbb {R}^d_+\) is discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信