平行张量的Nijenhuis几何

IF 0.9 3区 数学 Q1 MATHEMATICS
Andrzej Derdzinski, Paolo Piccione, Ivo Terek
{"title":"平行张量的Nijenhuis几何","authors":"Andrzej Derdzinski,&nbsp;Paolo Piccione,&nbsp;Ivo Terek","doi":"10.1007/s10231-024-01531-2","DOIUrl":null,"url":null,"abstract":"<div><p>A tensor—meaning here a tensor field <span>\\(\\,\\Theta \\)</span> of any type (<i>p</i>, <i>q</i>) on a manifold—may be called integrable if it is parallel relative to some torsion-free connection. We provide analytical and geometric characterizations of integrability for differential <i>q</i>-forms, <span>\\(q=0,1,2,n-1,n\\)</span> (in dimension <i>n</i>), vectors, bivectors, symmetric <span>\\(\\,(2,0)\\,\\)</span> and <span>\\(\\,(0,2)\\,\\)</span> tensors, as well as complex-diagonalizable and nilpotent tensors of type <span>\\(\\,(1,1)\\)</span>. In most cases, integrability is equivalent to algebraic constancy of <span>\\(\\,\\Theta \\,\\)</span> coupled with the vanishing of one or more suitably defined Nijenhuis-type tensors, depending on <span>\\(\\,\\Theta \\,\\)</span> via a quasilinear first-order differential operator. For <span>\\(\\,(p,q)=(1,1)\\)</span>, they include the ordinary Nijenhuis tensor.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 4","pages":"1381 - 1401"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nijenhuis geometry of parallel tensors\",\"authors\":\"Andrzej Derdzinski,&nbsp;Paolo Piccione,&nbsp;Ivo Terek\",\"doi\":\"10.1007/s10231-024-01531-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A tensor—meaning here a tensor field <span>\\\\(\\\\,\\\\Theta \\\\)</span> of any type (<i>p</i>, <i>q</i>) on a manifold—may be called integrable if it is parallel relative to some torsion-free connection. We provide analytical and geometric characterizations of integrability for differential <i>q</i>-forms, <span>\\\\(q=0,1,2,n-1,n\\\\)</span> (in dimension <i>n</i>), vectors, bivectors, symmetric <span>\\\\(\\\\,(2,0)\\\\,\\\\)</span> and <span>\\\\(\\\\,(0,2)\\\\,\\\\)</span> tensors, as well as complex-diagonalizable and nilpotent tensors of type <span>\\\\(\\\\,(1,1)\\\\)</span>. In most cases, integrability is equivalent to algebraic constancy of <span>\\\\(\\\\,\\\\Theta \\\\,\\\\)</span> coupled with the vanishing of one or more suitably defined Nijenhuis-type tensors, depending on <span>\\\\(\\\\,\\\\Theta \\\\,\\\\)</span> via a quasilinear first-order differential operator. For <span>\\\\(\\\\,(p,q)=(1,1)\\\\)</span>, they include the ordinary Nijenhuis tensor.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"204 4\",\"pages\":\"1381 - 1401\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01531-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01531-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一个张量——这里指流形上任意类型(p, q)的张量场\(\,\Theta \)——如果它相对于某个无扭连接是平行的,就可以被称为可积的。我们提供了微分q形式,\(q=0,1,2,n-1,n\) (n维),向量,双向量,对称\(\,(2,0)\,\)和\(\,(0,2)\,\)张量,以及\(\,(1,1)\)型复对角化和幂零张量的可积性的解析和几何表征。在大多数情况下,可积性等价于\(\,\Theta \,\)的代数常数加上一个或多个适当定义的nijenhuis型张量的消失,通过拟线性一阶微分算子依赖于\(\,\Theta \,\)。对于\(\,(p,q)=(1,1)\),它们包括普通的Nijenhuis张量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nijenhuis geometry of parallel tensors

Nijenhuis geometry of parallel tensors

A tensor—meaning here a tensor field \(\,\Theta \) of any type (pq) on a manifold—may be called integrable if it is parallel relative to some torsion-free connection. We provide analytical and geometric characterizations of integrability for differential q-forms, \(q=0,1,2,n-1,n\) (in dimension n), vectors, bivectors, symmetric \(\,(2,0)\,\) and \(\,(0,2)\,\) tensors, as well as complex-diagonalizable and nilpotent tensors of type \(\,(1,1)\). In most cases, integrability is equivalent to algebraic constancy of \(\,\Theta \,\) coupled with the vanishing of one or more suitably defined Nijenhuis-type tensors, depending on \(\,\Theta \,\) via a quasilinear first-order differential operator. For \(\,(p,q)=(1,1)\), they include the ordinary Nijenhuis tensor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信