高温高熵合金热变形行为研究综述

IF 4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Reliance Jain, Sandeep Jain, Cheenepalli Nagarjuna, Sumanta Samal, Anuja P. Rananavare, Sheetal Kumar Dewangan, Byungmin Ahn
{"title":"高温高熵合金热变形行为研究综述","authors":"Reliance Jain,&nbsp;Sandeep Jain,&nbsp;Cheenepalli Nagarjuna,&nbsp;Sumanta Samal,&nbsp;Anuja P. Rananavare,&nbsp;Sheetal Kumar Dewangan,&nbsp;Byungmin Ahn","doi":"10.1007/s12540-024-01888-2","DOIUrl":null,"url":null,"abstract":"<div><p>In contrast to conventional alloys, multicomponent high-entropy alloys (HEAs) have emerged as promising candidates in the field of advanced materials because of their unique composition, microstructure, mechanical and thermal properties, rendering these materials well-suited for a diverse range of applications. For high temperature applications, understanding the hot workability of HEAs is essential for optimizing their processing conditions, tailoring their microstructures and mechanical properties. The current review provides a comprehensive overview of the hot workability of HEAs, including the compression phenomenon observed during hot deformation, the application and use of processing maps, modeling approaches for predicting flow stress, and the deformation mechanisms involved. Different design strategies applicable to HEAs for high-temperature applications have been discussed in this review. The prediction of hot deformation behaviors and processing maps of different HEAs can benefit the research community in designing and developing HEAs for high-temperature applications. Furthermore, we highlight the future scope and challenges in this field.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"31 8","pages":"2181 - 2213"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Review on Hot Deformation Behavior of High-Entropy Alloys for High Temperature Applications\",\"authors\":\"Reliance Jain,&nbsp;Sandeep Jain,&nbsp;Cheenepalli Nagarjuna,&nbsp;Sumanta Samal,&nbsp;Anuja P. Rananavare,&nbsp;Sheetal Kumar Dewangan,&nbsp;Byungmin Ahn\",\"doi\":\"10.1007/s12540-024-01888-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In contrast to conventional alloys, multicomponent high-entropy alloys (HEAs) have emerged as promising candidates in the field of advanced materials because of their unique composition, microstructure, mechanical and thermal properties, rendering these materials well-suited for a diverse range of applications. For high temperature applications, understanding the hot workability of HEAs is essential for optimizing their processing conditions, tailoring their microstructures and mechanical properties. The current review provides a comprehensive overview of the hot workability of HEAs, including the compression phenomenon observed during hot deformation, the application and use of processing maps, modeling approaches for predicting flow stress, and the deformation mechanisms involved. Different design strategies applicable to HEAs for high-temperature applications have been discussed in this review. The prediction of hot deformation behaviors and processing maps of different HEAs can benefit the research community in designing and developing HEAs for high-temperature applications. Furthermore, we highlight the future scope and challenges in this field.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":\"31 8\",\"pages\":\"2181 - 2213\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12540-024-01888-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01888-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与传统合金相比,多组分高熵合金(HEAs)由于其独特的成分、微观结构、机械和热性能,在先进材料领域成为有希望的候选者,使这些材料非常适合各种应用。对于高温应用,了解HEAs的热加工性对于优化其加工条件,定制其显微结构和机械性能至关重要。本文综述了HEAs的热可加工性,包括热变形过程中观察到的压缩现象、加工图的应用和使用、预测流动应力的建模方法以及所涉及的变形机制。本文讨论了适用于高温应用的HEAs的不同设计策略。不同HEAs的热变形行为预测和加工图可以为设计和开发高温应用HEAs提供参考。此外,我们强调了该领域未来的范围和挑战。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comprehensive Review on Hot Deformation Behavior of High-Entropy Alloys for High Temperature Applications

In contrast to conventional alloys, multicomponent high-entropy alloys (HEAs) have emerged as promising candidates in the field of advanced materials because of their unique composition, microstructure, mechanical and thermal properties, rendering these materials well-suited for a diverse range of applications. For high temperature applications, understanding the hot workability of HEAs is essential for optimizing their processing conditions, tailoring their microstructures and mechanical properties. The current review provides a comprehensive overview of the hot workability of HEAs, including the compression phenomenon observed during hot deformation, the application and use of processing maps, modeling approaches for predicting flow stress, and the deformation mechanisms involved. Different design strategies applicable to HEAs for high-temperature applications have been discussed in this review. The prediction of hot deformation behaviors and processing maps of different HEAs can benefit the research community in designing and developing HEAs for high-temperature applications. Furthermore, we highlight the future scope and challenges in this field.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信