印度Dharwar克拉通岩石圈地幔物理化学演化的新视角

IF 1.1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Jiten Pattnaik, Sonja Aulbach, Sujoy Ghosh, E. V. S. S. K. Babu, Fanus Viljoen, Robert Bolhar
{"title":"印度Dharwar克拉通岩石圈地幔物理化学演化的新视角","authors":"Jiten Pattnaik,&nbsp;Sonja Aulbach,&nbsp;Sujoy Ghosh,&nbsp;E. V. S. S. K. Babu,&nbsp;Fanus Viljoen,&nbsp;Robert Bolhar","doi":"10.1007/s00710-025-00943-z","DOIUrl":null,"url":null,"abstract":"<div><p>The physicochemical evolution of cratonic lithosphere reflects the impacts of tectonomagmatic processes over its lifetime that may be deciphered using kimberlite-borne xenoliths and xenocrysts, but remain poorly constrained for the Indian Dharwar craton, owing to the dearth of fresh mantle material. This study examines detailed petrography and geochemical composition of six eclogite xenoliths, and additional eclogitic and peridotitic garnet separates, from the Wajrakarur kimberlites in the Eastern Dharwar Craton (EDC). Clinopyroxene in eclogite xenoliths is too altered to permit contamination-free sampling during laser ablation for trace element analysis. We overcome this limitation by exploiting relationships of clinopyroxene-garnet distribution coefficients with garnet Ca#, clinopyroxene jadeite content, and temperature. This allows a more accurate delineation of their petrogenesis from reconstructed bulk rocks and indicates their origin from variably plagioclase-rich oceanic crustal protoliths, with weak subsequent metasomatic overprint. In contrast, estimates of Fe³⁺ in garnet from peridotite xenoliths indicate an oxygen fugacity shift towards more oxidized conditions beneath the EDC linked to enrichment in melt-mobile elements (Ti, Zr) in the barren or weakly diamondiferous P1 and P3 kimberlites. The most depleted and reduced sample [Δlog<i>f</i>O<sub>2</sub> (FMQ) of -4.3; where FMQ corresponds to the fayalite-quartz-magnetite buffer] derives from diamondiferous kimberlite P7, suggesting oxidative melt metasomatism as a key control on the regional diamond inventory, although more data are needed. EDC eclogites and peridotites have estimated P-wave velocities of 8.46–8.63 km/s and 8.21–8.22 km/s, respectively, which are lower than present-day observed bulk P-wave velocities, and may point to lithological or thermal changes since Mesoproterozoic entrainment.</p></div>","PeriodicalId":18547,"journal":{"name":"Mineralogy and Petrology","volume":"119 3","pages":"715 - 741"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00710-025-00943-z.pdf","citationCount":"0","resultStr":"{\"title\":\"A fresh look at the physicochemical evolution of the lithospheric mantle beneath the Dharwar craton (India)\",\"authors\":\"Jiten Pattnaik,&nbsp;Sonja Aulbach,&nbsp;Sujoy Ghosh,&nbsp;E. V. S. S. K. Babu,&nbsp;Fanus Viljoen,&nbsp;Robert Bolhar\",\"doi\":\"10.1007/s00710-025-00943-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The physicochemical evolution of cratonic lithosphere reflects the impacts of tectonomagmatic processes over its lifetime that may be deciphered using kimberlite-borne xenoliths and xenocrysts, but remain poorly constrained for the Indian Dharwar craton, owing to the dearth of fresh mantle material. This study examines detailed petrography and geochemical composition of six eclogite xenoliths, and additional eclogitic and peridotitic garnet separates, from the Wajrakarur kimberlites in the Eastern Dharwar Craton (EDC). Clinopyroxene in eclogite xenoliths is too altered to permit contamination-free sampling during laser ablation for trace element analysis. We overcome this limitation by exploiting relationships of clinopyroxene-garnet distribution coefficients with garnet Ca#, clinopyroxene jadeite content, and temperature. This allows a more accurate delineation of their petrogenesis from reconstructed bulk rocks and indicates their origin from variably plagioclase-rich oceanic crustal protoliths, with weak subsequent metasomatic overprint. In contrast, estimates of Fe³⁺ in garnet from peridotite xenoliths indicate an oxygen fugacity shift towards more oxidized conditions beneath the EDC linked to enrichment in melt-mobile elements (Ti, Zr) in the barren or weakly diamondiferous P1 and P3 kimberlites. The most depleted and reduced sample [Δlog<i>f</i>O<sub>2</sub> (FMQ) of -4.3; where FMQ corresponds to the fayalite-quartz-magnetite buffer] derives from diamondiferous kimberlite P7, suggesting oxidative melt metasomatism as a key control on the regional diamond inventory, although more data are needed. EDC eclogites and peridotites have estimated P-wave velocities of 8.46–8.63 km/s and 8.21–8.22 km/s, respectively, which are lower than present-day observed bulk P-wave velocities, and may point to lithological or thermal changes since Mesoproterozoic entrainment.</p></div>\",\"PeriodicalId\":18547,\"journal\":{\"name\":\"Mineralogy and Petrology\",\"volume\":\"119 3\",\"pages\":\"715 - 741\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00710-025-00943-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralogy and Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00710-025-00943-z\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00710-025-00943-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

克拉通岩石圈的物理化学演化反映了其一生中构造岩浆过程的影响,可以用金伯利岩携带的包体和包体来解释,但由于缺乏新鲜的地幔物质,对印度Dharwar克拉通的物理化学演化仍然知之甚少。本文研究了东Dharwar克拉通(EDC) Wajrakarur金伯利岩中六个榴辉岩包体的详细岩石学和地球化学组成,以及额外的榴辉岩和橄榄岩石榴石分离物。榴辉岩捕虏体中的斜辉石变化太大,无法在激光烧蚀过程中进行无污染采样以进行微量元素分析。我们利用斜辉石-石榴石分布系数与石榴石Ca#、斜辉石翡翠含量和温度的关系克服了这一局限。这使得从重建的大块岩石中更准确地描绘出它们的岩石成因,并表明它们起源于富含斜长石的不同海洋地壳原岩,随后有弱的交代覆印。相比之下,橄榄岩包体中石榴石中的Fe⁺的估计表明,EDC下的氧逸度向更氧化的条件转移,这与贫瘠或弱钻石差异的P1和P3金伯利岩中熔融流动元素(Ti, Zr)的富集有关。最耗尽和减少的样品[ΔlogfO2 (FMQ)为-4.3;其中FMQ对应于含金刚石的金伯利岩P7,表明氧化熔融交代是区域钻石库存的关键控制因素,尽管需要更多的数据。EDC榴辉岩和橄榄岩的纵波速度分别为8.46-8.63 km/s和8.21-8.22 km/s,低于目前观测到的整体纵波速度,可能表明中元古代夹带以来的岩性或热变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fresh look at the physicochemical evolution of the lithospheric mantle beneath the Dharwar craton (India)

The physicochemical evolution of cratonic lithosphere reflects the impacts of tectonomagmatic processes over its lifetime that may be deciphered using kimberlite-borne xenoliths and xenocrysts, but remain poorly constrained for the Indian Dharwar craton, owing to the dearth of fresh mantle material. This study examines detailed petrography and geochemical composition of six eclogite xenoliths, and additional eclogitic and peridotitic garnet separates, from the Wajrakarur kimberlites in the Eastern Dharwar Craton (EDC). Clinopyroxene in eclogite xenoliths is too altered to permit contamination-free sampling during laser ablation for trace element analysis. We overcome this limitation by exploiting relationships of clinopyroxene-garnet distribution coefficients with garnet Ca#, clinopyroxene jadeite content, and temperature. This allows a more accurate delineation of their petrogenesis from reconstructed bulk rocks and indicates their origin from variably plagioclase-rich oceanic crustal protoliths, with weak subsequent metasomatic overprint. In contrast, estimates of Fe³⁺ in garnet from peridotite xenoliths indicate an oxygen fugacity shift towards more oxidized conditions beneath the EDC linked to enrichment in melt-mobile elements (Ti, Zr) in the barren or weakly diamondiferous P1 and P3 kimberlites. The most depleted and reduced sample [ΔlogfO2 (FMQ) of -4.3; where FMQ corresponds to the fayalite-quartz-magnetite buffer] derives from diamondiferous kimberlite P7, suggesting oxidative melt metasomatism as a key control on the regional diamond inventory, although more data are needed. EDC eclogites and peridotites have estimated P-wave velocities of 8.46–8.63 km/s and 8.21–8.22 km/s, respectively, which are lower than present-day observed bulk P-wave velocities, and may point to lithological or thermal changes since Mesoproterozoic entrainment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mineralogy and Petrology
Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Mineralogy and Petrology welcomes manuscripts from the classical fields of mineralogy, igneous and metamorphic petrology, geochemistry, crystallography, as well as their applications in academic experimentation and research, materials science and engineering, for technology, industry, environment, or society. The journal strongly promotes cross-fertilization among Earth-scientific and applied materials-oriented disciplines. Purely descriptive manuscripts on regional topics will not be considered. Mineralogy and Petrology was founded in 1872 by Gustav Tschermak as "Mineralogische und Petrographische Mittheilungen". It is one of Europe''s oldest geoscience journals. Former editors include outstanding names such as Gustav Tschermak, Friedrich Becke, Felix Machatschki, Josef Zemann, and Eugen F. Stumpfl.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信