L. Bruno Chandrasekar, M. Karunakaran, M. Divya Gnaneswari, S. Jegatheeswaran, Sonaimuthu Mohandoss, Subramanian Palanisamy, P. Shunmuga Sundaram, J. Thirumalai, Samar A. Aldossari
{"title":"镨掺杂氧化锌纳米颗粒的制备及其广泛应用","authors":"L. Bruno Chandrasekar, M. Karunakaran, M. Divya Gnaneswari, S. Jegatheeswaran, Sonaimuthu Mohandoss, Subramanian Palanisamy, P. Shunmuga Sundaram, J. Thirumalai, Samar A. Aldossari","doi":"10.1140/epjb/s10051-025-01007-z","DOIUrl":null,"url":null,"abstract":"<div><p>The attributes of anticancer efficacy, electrochemical and photocatalytic properties of the chemically prepared praseodymium-doped zinc oxide nanoparticles are herein chronicled. The results of the XRD analysis show the formation of the wurtzite geometry irrespective of the doping concentration of praseodymium. Crystallite size, strain, lattice constants and Young’s modulus are also assessed. The anticancer property of the undoped and Pr-doped ZnO nanoparticles against the human breast cancer cell line was evaluated using the MTT assay. The concentration-dependent decrease in cell proliferation is observed, and 100% cell toxicity is achieved at the concentration of 40 μg/ml, irrespective of doping with the IC50 ranging from 7.9 to 9.9 μg/ml. The doping enhances the specific capacitance of the prepared substance as an electrode material. The photocatalytic properties of the prepared nanoparticles are discussed using methyl orange as the pollutant. At 150 min, the degradation efficiency of the prepared zinc oxide catalyst is 78%, whereas the 5% praseodymium-doped zinc oxide is almost the maximum.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 8","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Praseodymium-doped zinc oxide nanoparticles: preparation and its manifold applications\",\"authors\":\"L. Bruno Chandrasekar, M. Karunakaran, M. Divya Gnaneswari, S. Jegatheeswaran, Sonaimuthu Mohandoss, Subramanian Palanisamy, P. Shunmuga Sundaram, J. Thirumalai, Samar A. Aldossari\",\"doi\":\"10.1140/epjb/s10051-025-01007-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The attributes of anticancer efficacy, electrochemical and photocatalytic properties of the chemically prepared praseodymium-doped zinc oxide nanoparticles are herein chronicled. The results of the XRD analysis show the formation of the wurtzite geometry irrespective of the doping concentration of praseodymium. Crystallite size, strain, lattice constants and Young’s modulus are also assessed. The anticancer property of the undoped and Pr-doped ZnO nanoparticles against the human breast cancer cell line was evaluated using the MTT assay. The concentration-dependent decrease in cell proliferation is observed, and 100% cell toxicity is achieved at the concentration of 40 μg/ml, irrespective of doping with the IC50 ranging from 7.9 to 9.9 μg/ml. The doping enhances the specific capacitance of the prepared substance as an electrode material. The photocatalytic properties of the prepared nanoparticles are discussed using methyl orange as the pollutant. At 150 min, the degradation efficiency of the prepared zinc oxide catalyst is 78%, whereas the 5% praseodymium-doped zinc oxide is almost the maximum.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"98 8\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-025-01007-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-01007-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Praseodymium-doped zinc oxide nanoparticles: preparation and its manifold applications
The attributes of anticancer efficacy, electrochemical and photocatalytic properties of the chemically prepared praseodymium-doped zinc oxide nanoparticles are herein chronicled. The results of the XRD analysis show the formation of the wurtzite geometry irrespective of the doping concentration of praseodymium. Crystallite size, strain, lattice constants and Young’s modulus are also assessed. The anticancer property of the undoped and Pr-doped ZnO nanoparticles against the human breast cancer cell line was evaluated using the MTT assay. The concentration-dependent decrease in cell proliferation is observed, and 100% cell toxicity is achieved at the concentration of 40 μg/ml, irrespective of doping with the IC50 ranging from 7.9 to 9.9 μg/ml. The doping enhances the specific capacitance of the prepared substance as an electrode material. The photocatalytic properties of the prepared nanoparticles are discussed using methyl orange as the pollutant. At 150 min, the degradation efficiency of the prepared zinc oxide catalyst is 78%, whereas the 5% praseodymium-doped zinc oxide is almost the maximum.