中的三维不可压缩欧拉方程解的有限时间奇异性\(\:C^{\infty}(\mathbb{R}^3 \setminus \{0\})\cap C^{1,\alpha}\cap L^2\)

IF 2.6 1区 数学 Q1 MATHEMATICS
Diego Córdoba, Luis Martinez-Zoroa, Fan Zheng
{"title":"中的三维不可压缩欧拉方程解的有限时间奇异性\\(\\:C^{\\infty}(\\mathbb{R}^3 \\setminus \\{0\\})\\cap C^{1,\\alpha}\\cap L^2\\)","authors":"Diego Córdoba,&nbsp;Luis Martinez-Zoroa,&nbsp;Fan Zheng","doi":"10.1007/s40818-025-00214-2","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a novel mechanism that reveals finite time singularities within the 1D De Gregorio model and the 3D incompressible Euler equations. Remarkably, we do not construct our blow up using self-similar coordinates, but build it from infinitely many regions with vorticity, separated by vortex-free regions in between. It yields solutions of the 3D incompressible Euler equations in <span>\\(\\mathbb{R}^3\\times [-T,0]\\)</span> such that the velocity is in the space <span>\\(C^{\\infty}(\\mathbb{R}^3 \\setminus \\{0\\})\\cap C^{1,\\alpha}\\cap L^2\\)</span> where <span>\\(0 &lt; \\alpha \\ll 1\\)</span> for times <span>\\(t\\in (-T,0)\\)</span> and is not <span>\\(C^1\\)</span> at time 0.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"11 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-025-00214-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Finite Time Singularities to the 3D Incompressible Euler Equations for Solutions in\\\\(\\\\:C^{\\\\infty}(\\\\mathbb{R}^3 \\\\setminus \\\\{0\\\\})\\\\cap C^{1,\\\\alpha}\\\\cap L^2\\\\)\",\"authors\":\"Diego Córdoba,&nbsp;Luis Martinez-Zoroa,&nbsp;Fan Zheng\",\"doi\":\"10.1007/s40818-025-00214-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a novel mechanism that reveals finite time singularities within the 1D De Gregorio model and the 3D incompressible Euler equations. Remarkably, we do not construct our blow up using self-similar coordinates, but build it from infinitely many regions with vorticity, separated by vortex-free regions in between. It yields solutions of the 3D incompressible Euler equations in <span>\\\\(\\\\mathbb{R}^3\\\\times [-T,0]\\\\)</span> such that the velocity is in the space <span>\\\\(C^{\\\\infty}(\\\\mathbb{R}^3 \\\\setminus \\\\{0\\\\})\\\\cap C^{1,\\\\alpha}\\\\cap L^2\\\\)</span> where <span>\\\\(0 &lt; \\\\alpha \\\\ll 1\\\\)</span> for times <span>\\\\(t\\\\in (-T,0)\\\\)</span> and is not <span>\\\\(C^1\\\\)</span> at time 0.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"11 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40818-025-00214-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-025-00214-2\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-025-00214-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种新的机制,揭示了一维De Gregorio模型和三维不可压缩欧拉方程中的有限时间奇点。值得注意的是,我们没有使用自相似坐标来构建爆炸,而是在无限多个具有涡度的区域中构建爆炸,这些区域之间被无涡区隔开。它得到了\(\mathbb{R}^3\times [-T,0]\)中三维不可压缩欧拉方程的解,使得速度在空间\(C^{\infty}(\mathbb{R}^3 \setminus \{0\})\cap C^{1,\alpha}\cap L^2\)中,其中\(0 < \alpha \ll 1\)是乘以\(t\in (-T,0)\),而不是在时间0时的\(C^1\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite Time Singularities to the 3D Incompressible Euler Equations for Solutions in\(\:C^{\infty}(\mathbb{R}^3 \setminus \{0\})\cap C^{1,\alpha}\cap L^2\)

We introduce a novel mechanism that reveals finite time singularities within the 1D De Gregorio model and the 3D incompressible Euler equations. Remarkably, we do not construct our blow up using self-similar coordinates, but build it from infinitely many regions with vorticity, separated by vortex-free regions in between. It yields solutions of the 3D incompressible Euler equations in \(\mathbb{R}^3\times [-T,0]\) such that the velocity is in the space \(C^{\infty}(\mathbb{R}^3 \setminus \{0\})\cap C^{1,\alpha}\cap L^2\) where \(0 < \alpha \ll 1\) for times \(t\in (-T,0)\) and is not \(C^1\) at time 0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信