{"title":"CaF2-HoF3体系中三种固相离子电导率的比较分析","authors":"N. I. Sorokin","doi":"10.1134/S0036023625601096","DOIUrl":null,"url":null,"abstract":"<p>A comparative analysis of ion transport mechanisms in crystals was carried out for three phases formed in the CaF<sub>2</sub>–HoF<sub>3</sub> condensed system: a fluorite phase (the <i>F</i>-phase, CaF<sub>2</sub> and Ca<sub>1–<i>x</i></sub>Ho<sub><i>x</i></sub>F<sub>2+<i>x</i></sub> solid solution), a tysonite phase (the <i>T</i>-phase, Ho<sub>1–<i>y</i></sub>Ca<sub><i>y</i></sub>F<sub>3–<i>y</i></sub> solid solution), and a phase having the orthorhombic β-YF<sub>3</sub> structure (the <i>R</i>-phase, HoF<sub>3</sub>). The ionic conductivity σ<sub>dc</sub>(<i>T</i>) fundamental data gained in experiments on single-crystal samples was used to derive ionic conductivity versus composition and activation enthalpy of ion transfer versus composition dependences. A comparison of the properties of the components of the system under study shows that the conductivity of the HoF<sub>3</sub> <i>R</i>-phase (σ<sub>500 K</sub> = 5 × 10<sup>−6</sup> S/cm at 500 K) is five orders of magnitude that of the stoichiometric CaF<sub>2</sub> <i>F</i>-phase. In the region of the Ca<sub>1–<i>x</i></sub>Ho<sub><i>x</i></sub>F<sub>2 +</sub> <sub><i>x</i></sub> (0 < <i>x</i> ≤ 0.35) nonstoichiometric <i>F</i>-phase, the interstitial mechanism of electrical conductivity occurs. The σ<sub>500 K</sub> increases as the HoF<sub>3</sub> concentration increases to reach 4 × 10<sup>−5</sup> S/cm at <i>x</i> = 0.35. The Ho<sub>1–<i>y</i></sub>Ca<sub><i>y</i></sub>F<sub>3–<i>y</i></sub> (<i>y</i> = 1 − <i>x</i>, <i>x</i> = 0.77) nonstoichiometric <i>T</i>-phase has σ<sub>500 K</sub> = 2 × 10<sup>−4</sup> S/cm, which is five and 40 times as high as the electrical conductivity of the Ca<sub>0.65</sub>Ho<sub>0.35</sub>F<sub>2.35</sub> <i>F</i>-phase and HoF<sub>3</sub> <i>R</i>-phase, respectively. The reasons for the rapid anionic transport in the nonstoichiometric <i>T</i>-phase are the ion vacancy electrical conductivity and extensive heterovalent isomorphism of cations.</p>","PeriodicalId":762,"journal":{"name":"Russian Journal of Inorganic Chemistry","volume":"70 5","pages":"657 - 665"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionic Conductivity of the Three Solid Phases in the CaF2–HoF3 System: A Comparative Analysis\",\"authors\":\"N. I. Sorokin\",\"doi\":\"10.1134/S0036023625601096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A comparative analysis of ion transport mechanisms in crystals was carried out for three phases formed in the CaF<sub>2</sub>–HoF<sub>3</sub> condensed system: a fluorite phase (the <i>F</i>-phase, CaF<sub>2</sub> and Ca<sub>1–<i>x</i></sub>Ho<sub><i>x</i></sub>F<sub>2+<i>x</i></sub> solid solution), a tysonite phase (the <i>T</i>-phase, Ho<sub>1–<i>y</i></sub>Ca<sub><i>y</i></sub>F<sub>3–<i>y</i></sub> solid solution), and a phase having the orthorhombic β-YF<sub>3</sub> structure (the <i>R</i>-phase, HoF<sub>3</sub>). The ionic conductivity σ<sub>dc</sub>(<i>T</i>) fundamental data gained in experiments on single-crystal samples was used to derive ionic conductivity versus composition and activation enthalpy of ion transfer versus composition dependences. A comparison of the properties of the components of the system under study shows that the conductivity of the HoF<sub>3</sub> <i>R</i>-phase (σ<sub>500 K</sub> = 5 × 10<sup>−6</sup> S/cm at 500 K) is five orders of magnitude that of the stoichiometric CaF<sub>2</sub> <i>F</i>-phase. In the region of the Ca<sub>1–<i>x</i></sub>Ho<sub><i>x</i></sub>F<sub>2 +</sub> <sub><i>x</i></sub> (0 < <i>x</i> ≤ 0.35) nonstoichiometric <i>F</i>-phase, the interstitial mechanism of electrical conductivity occurs. The σ<sub>500 K</sub> increases as the HoF<sub>3</sub> concentration increases to reach 4 × 10<sup>−5</sup> S/cm at <i>x</i> = 0.35. The Ho<sub>1–<i>y</i></sub>Ca<sub><i>y</i></sub>F<sub>3–<i>y</i></sub> (<i>y</i> = 1 − <i>x</i>, <i>x</i> = 0.77) nonstoichiometric <i>T</i>-phase has σ<sub>500 K</sub> = 2 × 10<sup>−4</sup> S/cm, which is five and 40 times as high as the electrical conductivity of the Ca<sub>0.65</sub>Ho<sub>0.35</sub>F<sub>2.35</sub> <i>F</i>-phase and HoF<sub>3</sub> <i>R</i>-phase, respectively. The reasons for the rapid anionic transport in the nonstoichiometric <i>T</i>-phase are the ion vacancy electrical conductivity and extensive heterovalent isomorphism of cations.</p>\",\"PeriodicalId\":762,\"journal\":{\"name\":\"Russian Journal of Inorganic Chemistry\",\"volume\":\"70 5\",\"pages\":\"657 - 665\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0036023625601096\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0036023625601096","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
对CaF2 - HoF3凝聚体系中形成的三种相:萤石相(f相,CaF2和Ca1-xHoxF2 +x固溶体)、铁长石相(t相,Ho1-yCayF3-y固溶体)和具有正交结构的β-YF3相(r相,HoF3)进行了晶体中离子传输机制的比较分析。利用单晶样品实验中获得的离子电导率σdc(T)基本数据,推导了离子电导率随组分的变化规律和离子转移激活焓随组分的变化规律。对比研究体系各组分的性能表明,HoF3 r相(σ500 K = 5 × 10−6 S/cm, 500 K时)的电导率是CaF2 f相的5个数量级。在Ca1-xHoxF2 + x (0 < x≤0.35)非化学计量f相区域,发生了电导率的间隙机制。σ500 K随HoF3浓度的增加而增大,在x = 0.35时达到4 × 10−5 S/cm。Ho1-yCayF3-y (y = 1−x, x = 0.77)非化学计量t相的电导率为σ500 K = 2 × 10−4 S/cm,分别是Ca0.65Ho0.35F2.35 f相和ho3 r相的5倍和40倍。阴离子在非化学计量t相中快速输运的原因是离子的空位导电性和阳离子广泛的异价同构性。
Ionic Conductivity of the Three Solid Phases in the CaF2–HoF3 System: A Comparative Analysis
A comparative analysis of ion transport mechanisms in crystals was carried out for three phases formed in the CaF2–HoF3 condensed system: a fluorite phase (the F-phase, CaF2 and Ca1–xHoxF2+x solid solution), a tysonite phase (the T-phase, Ho1–yCayF3–y solid solution), and a phase having the orthorhombic β-YF3 structure (the R-phase, HoF3). The ionic conductivity σdc(T) fundamental data gained in experiments on single-crystal samples was used to derive ionic conductivity versus composition and activation enthalpy of ion transfer versus composition dependences. A comparison of the properties of the components of the system under study shows that the conductivity of the HoF3R-phase (σ500 K = 5 × 10−6 S/cm at 500 K) is five orders of magnitude that of the stoichiometric CaF2F-phase. In the region of the Ca1–xHoxF2 +x (0 < x ≤ 0.35) nonstoichiometric F-phase, the interstitial mechanism of electrical conductivity occurs. The σ500 K increases as the HoF3 concentration increases to reach 4 × 10−5 S/cm at x = 0.35. The Ho1–yCayF3–y (y = 1 − x, x = 0.77) nonstoichiometric T-phase has σ500 K = 2 × 10−4 S/cm, which is five and 40 times as high as the electrical conductivity of the Ca0.65Ho0.35F2.35F-phase and HoF3R-phase, respectively. The reasons for the rapid anionic transport in the nonstoichiometric T-phase are the ion vacancy electrical conductivity and extensive heterovalent isomorphism of cations.
期刊介绍:
Russian Journal of Inorganic Chemistry is a monthly periodical that covers the following topics of research: the synthesis and properties of inorganic compounds, coordination compounds, physicochemical analysis of inorganic systems, theoretical inorganic chemistry, physical methods of investigation, chemistry of solutions, inorganic materials, and nanomaterials.