比伐鲁定在静脉溶液中的扩展稳定性

IF 3 Q2 PHARMACOLOGY & PHARMACY
Sherif Hanafy Mahmoud, Forugh Sanaee, Jenna Smith, Lindsay Ryerson, Mary Bauman, Yvonne Rees, Elona Turley, Rashid Alobaidi, Marcel Romanick, Afsaneh Lavasanifar
{"title":"比伐鲁定在静脉溶液中的扩展稳定性","authors":"Sherif Hanafy Mahmoud,&nbsp;Forugh Sanaee,&nbsp;Jenna Smith,&nbsp;Lindsay Ryerson,&nbsp;Mary Bauman,&nbsp;Yvonne Rees,&nbsp;Elona Turley,&nbsp;Rashid Alobaidi,&nbsp;Marcel Romanick,&nbsp;Afsaneh Lavasanifar","doi":"10.1186/s43094-025-00841-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Bivalirudin is the preferred anticoagulant for pediatric ventricular assist device (VAD) patients. The manufacturer only permits the diluted drug to be used for 24 h once mixed with the sterile solutions. Most infants on VAD require much less than a single infusion bag in 24 h and any remaining infusion at 24 h must be discarded, resulting in increased medication waste and health care costs. The objective of this study was to examine the effect of storage containers and temperature on the stability and activity of intravenous (IV) bivalirudin solutions. </p><h3>Results</h3><p>Diluted bivalirudin (AngioMax®) IV solutions (1 and 5 mg/mL in dextrose 5% in water) were prepared in bags and syringes and stored at room temperature and at 2–8 °C. Bivalirudin concentrations were determined at different time points. Bivalirudin activity was determined by assessing its anticoagulating effect on human plasma via partial thromboplastin time (PTT) prolongation. Results suggest that a compounded bivalirudin infusion solution maintains its therapeutic activity and stability at room temperature for up to 48 h.</p><h3>Conclusions</h3><p>Data suggest that bivalirudin solutions in dextrose 5% in water and protected from light are potentially stable at room temperature for up to 48 h. Further studies are needed to confirm our study findings.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"11 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-025-00841-3","citationCount":"0","resultStr":"{\"title\":\"Extended stability of bivalirudin in intravenous solutions\",\"authors\":\"Sherif Hanafy Mahmoud,&nbsp;Forugh Sanaee,&nbsp;Jenna Smith,&nbsp;Lindsay Ryerson,&nbsp;Mary Bauman,&nbsp;Yvonne Rees,&nbsp;Elona Turley,&nbsp;Rashid Alobaidi,&nbsp;Marcel Romanick,&nbsp;Afsaneh Lavasanifar\",\"doi\":\"10.1186/s43094-025-00841-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Bivalirudin is the preferred anticoagulant for pediatric ventricular assist device (VAD) patients. The manufacturer only permits the diluted drug to be used for 24 h once mixed with the sterile solutions. Most infants on VAD require much less than a single infusion bag in 24 h and any remaining infusion at 24 h must be discarded, resulting in increased medication waste and health care costs. The objective of this study was to examine the effect of storage containers and temperature on the stability and activity of intravenous (IV) bivalirudin solutions. </p><h3>Results</h3><p>Diluted bivalirudin (AngioMax®) IV solutions (1 and 5 mg/mL in dextrose 5% in water) were prepared in bags and syringes and stored at room temperature and at 2–8 °C. Bivalirudin concentrations were determined at different time points. Bivalirudin activity was determined by assessing its anticoagulating effect on human plasma via partial thromboplastin time (PTT) prolongation. Results suggest that a compounded bivalirudin infusion solution maintains its therapeutic activity and stability at room temperature for up to 48 h.</p><h3>Conclusions</h3><p>Data suggest that bivalirudin solutions in dextrose 5% in water and protected from light are potentially stable at room temperature for up to 48 h. Further studies are needed to confirm our study findings.</p></div>\",\"PeriodicalId\":577,\"journal\":{\"name\":\"Future Journal of Pharmaceutical Sciences\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-025-00841-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s43094-025-00841-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-025-00841-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

背景:比伐鲁定是儿童心室辅助装置(VAD)患者首选的抗凝剂。制造商只允许稀释后的药物在与无菌溶液混合后使用24小时。大多数VAD患儿在24小时内需要的输液量远远少于一个输液袋,24小时内任何剩余的输液量都必须丢弃,导致药物浪费和医疗保健费用增加。本研究的目的是考察贮存容器和温度对比伐鲁定静脉注射溶液稳定性和活性的影响。结果制备稀释的比伐鲁定(AngioMax®)IV溶液(1和5 mg/mL葡萄糖5%水),分别装于包装袋和注射器中,室温和2-8℃保存。测定比伐鲁定在不同时间点的浓度。比伐鲁定的活性是通过部分凝血活素时间(PTT)延长来评估其对人血浆的抗凝作用。结果表明,复合比伐鲁定输注液在室温下可保持48小时的治疗活性和稳定性。结论数据表明,比伐鲁定溶液在5%葡萄糖水溶液中避光可在室温下保持48小时的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended stability of bivalirudin in intravenous solutions

Background

Bivalirudin is the preferred anticoagulant for pediatric ventricular assist device (VAD) patients. The manufacturer only permits the diluted drug to be used for 24 h once mixed with the sterile solutions. Most infants on VAD require much less than a single infusion bag in 24 h and any remaining infusion at 24 h must be discarded, resulting in increased medication waste and health care costs. The objective of this study was to examine the effect of storage containers and temperature on the stability and activity of intravenous (IV) bivalirudin solutions.

Results

Diluted bivalirudin (AngioMax®) IV solutions (1 and 5 mg/mL in dextrose 5% in water) were prepared in bags and syringes and stored at room temperature and at 2–8 °C. Bivalirudin concentrations were determined at different time points. Bivalirudin activity was determined by assessing its anticoagulating effect on human plasma via partial thromboplastin time (PTT) prolongation. Results suggest that a compounded bivalirudin infusion solution maintains its therapeutic activity and stability at room temperature for up to 48 h.

Conclusions

Data suggest that bivalirudin solutions in dextrose 5% in water and protected from light are potentially stable at room temperature for up to 48 h. Further studies are needed to confirm our study findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
44
审稿时长
23 weeks
期刊介绍: Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信