曲线的不可代数邻域

IF 0.9 3区 数学 Q1 MATHEMATICS
Maycol Falla Luza, Frank Loray, Paulo Sad
{"title":"曲线的不可代数邻域","authors":"Maycol Falla Luza,&nbsp;Frank Loray,&nbsp;Paulo Sad","doi":"10.1007/s10231-024-01542-z","DOIUrl":null,"url":null,"abstract":"<div><p>We provide several families of compact complex curves embedded in smooth complex surfaces such that no neighborhood of the curve can be embedded in an algebraic surface. Different constructions are proposed, by patching neighborhoods of curves in projective surfaces, and blowing down exceptional curves. These constructions generalize examples recently given by S. Lvovski. One of our non algebraic argument is based on an extension theorem of S. Ivashkovich.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 4","pages":"1657 - 1666"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-algebraizable neighborhoods of curves\",\"authors\":\"Maycol Falla Luza,&nbsp;Frank Loray,&nbsp;Paulo Sad\",\"doi\":\"10.1007/s10231-024-01542-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We provide several families of compact complex curves embedded in smooth complex surfaces such that no neighborhood of the curve can be embedded in an algebraic surface. Different constructions are proposed, by patching neighborhoods of curves in projective surfaces, and blowing down exceptional curves. These constructions generalize examples recently given by S. Lvovski. One of our non algebraic argument is based on an extension theorem of S. Ivashkovich.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"204 4\",\"pages\":\"1657 - 1666\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01542-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01542-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了嵌入光滑复杂曲面的紧复曲线族,使得曲线的邻域不能嵌入代数曲面。通过在投影曲面上修补曲线的邻域,并吹掉异常曲线,提出了不同的构造方法。这些结构概括了S. Lvovski最近给出的例子。我们的一个非代数论证是基于S. Ivashkovich的一个扩展定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-algebraizable neighborhoods of curves

We provide several families of compact complex curves embedded in smooth complex surfaces such that no neighborhood of the curve can be embedded in an algebraic surface. Different constructions are proposed, by patching neighborhoods of curves in projective surfaces, and blowing down exceptional curves. These constructions generalize examples recently given by S. Lvovski. One of our non algebraic argument is based on an extension theorem of S. Ivashkovich.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信