畜禽粪便厌氧消化过程中生物聚合物水解机理的理论分析

IF 3 3区 工程技术 Q3 ENERGY & FUELS
Sebastián Villegas-Moncada, Mario Luna-delRisco, Catalina Arroyave-Quiceno, Mauricio González-Palacio, Carlos Peláez-Jaramillo
{"title":"畜禽粪便厌氧消化过程中生物聚合物水解机理的理论分析","authors":"Sebastián Villegas-Moncada,&nbsp;Mario Luna-delRisco,&nbsp;Catalina Arroyave-Quiceno,&nbsp;Mauricio González-Palacio,&nbsp;Carlos Peláez-Jaramillo","doi":"10.1007/s12155-025-10873-5","DOIUrl":null,"url":null,"abstract":"<div><p>Over the past two decades, modeling the hydrolysis stage has been recognized as critical for understanding its behavior and determining optimal operating conditions for anaerobic digestion (AD). Traditional approaches, such as first-order and Michaelis–Menten kinetic models, account for substrate concentration and enzymatic activity, respectively, but neglect mass-transfer effects. In this work, we propose a semi-empirical model that integrates enzymatic catalysis with molecular diffusion phenomena in the microbial boundary layer. We derive a hydrolysis rate expression by combining Michaelis–Menten kinetics with Fick’s law of diffusion and validate it against experimental data from a thermophilic batch reactor treating cattle manure (55 <span>\\(^{\\circ }\\)</span>C, 62 <span>\\(g\\,\\text {VS}\\,\\text {L}^{-1}\\)</span>). Compared to the first-order model (<i>R</i><span>\\(^2\\)</span> = 0.940), our model achieves a superior fit (<i>R</i><span>\\(^2\\)</span> = 0.973), demonstrating that diffusion resistance can significantly influence hydrolysis kinetics. By formulating the kinetic model in terms of explicit biochemical and mass-transfer parameters (<span>\\(r_{h,\\text {max}}\\)</span>, <span>\\(K_M\\)</span>, <span>\\(k_d\\)</span>, <span>\\(\\alpha \\)</span>), it becomes possible to identify optimal operational strategies for enhancing hydrolysis efficiency. The results indicate that coupling enzymatic catalysis with diffusion provides a more accurate theoretical description than the first-order model and enables improved prediction of biopolymer solubilization in AD.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Analysis of the Hydrolysis Mechanism of Biopolymers in the Anaerobic Digestion Process of Livestock Manure\",\"authors\":\"Sebastián Villegas-Moncada,&nbsp;Mario Luna-delRisco,&nbsp;Catalina Arroyave-Quiceno,&nbsp;Mauricio González-Palacio,&nbsp;Carlos Peláez-Jaramillo\",\"doi\":\"10.1007/s12155-025-10873-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Over the past two decades, modeling the hydrolysis stage has been recognized as critical for understanding its behavior and determining optimal operating conditions for anaerobic digestion (AD). Traditional approaches, such as first-order and Michaelis–Menten kinetic models, account for substrate concentration and enzymatic activity, respectively, but neglect mass-transfer effects. In this work, we propose a semi-empirical model that integrates enzymatic catalysis with molecular diffusion phenomena in the microbial boundary layer. We derive a hydrolysis rate expression by combining Michaelis–Menten kinetics with Fick’s law of diffusion and validate it against experimental data from a thermophilic batch reactor treating cattle manure (55 <span>\\\\(^{\\\\circ }\\\\)</span>C, 62 <span>\\\\(g\\\\,\\\\text {VS}\\\\,\\\\text {L}^{-1}\\\\)</span>). Compared to the first-order model (<i>R</i><span>\\\\(^2\\\\)</span> = 0.940), our model achieves a superior fit (<i>R</i><span>\\\\(^2\\\\)</span> = 0.973), demonstrating that diffusion resistance can significantly influence hydrolysis kinetics. By formulating the kinetic model in terms of explicit biochemical and mass-transfer parameters (<span>\\\\(r_{h,\\\\text {max}}\\\\)</span>, <span>\\\\(K_M\\\\)</span>, <span>\\\\(k_d\\\\)</span>, <span>\\\\(\\\\alpha \\\\)</span>), it becomes possible to identify optimal operational strategies for enhancing hydrolysis efficiency. The results indicate that coupling enzymatic catalysis with diffusion provides a more accurate theoretical description than the first-order model and enables improved prediction of biopolymer solubilization in AD.</p></div>\",\"PeriodicalId\":487,\"journal\":{\"name\":\"BioEnergy Research\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioEnergy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12155-025-10873-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-025-10873-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年里,水解阶段的建模已经被认为是理解其行为和确定厌氧消化(AD)的最佳操作条件的关键。传统的方法,如一阶和Michaelis-Menten动力学模型,分别考虑底物浓度和酶活性,但忽略了传质效应。在这项工作中,我们提出了一种半经验模型,将酶催化与微生物边界层中的分子扩散现象结合起来。我们通过结合Michaelis-Menten动力学和Fick扩散定律推导出水解速率表达式,并根据处理牛粪的亲热间歇反应器的实验数据对其进行验证(55 \(^{\circ }\) C, 62 \(g\,\text {VS}\,\text {L}^{-1}\))。与一阶模型(R \(^2\) = 0.940)相比,我们的模型获得了更好的拟合(R \(^2\) = 0.973),表明扩散阻力对水解动力学有显著影响。通过根据明确的生化和传质参数(\(r_{h,\text {max}}\), \(K_M\), \(k_d\), \(\alpha \))制定动力学模型,可以确定提高水解效率的最佳操作策略。结果表明,与一阶模型相比,酶催化与扩散的耦合提供了更准确的理论描述,并能更好地预测生物聚合物在AD中的增溶作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical Analysis of the Hydrolysis Mechanism of Biopolymers in the Anaerobic Digestion Process of Livestock Manure

Over the past two decades, modeling the hydrolysis stage has been recognized as critical for understanding its behavior and determining optimal operating conditions for anaerobic digestion (AD). Traditional approaches, such as first-order and Michaelis–Menten kinetic models, account for substrate concentration and enzymatic activity, respectively, but neglect mass-transfer effects. In this work, we propose a semi-empirical model that integrates enzymatic catalysis with molecular diffusion phenomena in the microbial boundary layer. We derive a hydrolysis rate expression by combining Michaelis–Menten kinetics with Fick’s law of diffusion and validate it against experimental data from a thermophilic batch reactor treating cattle manure (55 \(^{\circ }\)C, 62 \(g\,\text {VS}\,\text {L}^{-1}\)). Compared to the first-order model (R\(^2\) = 0.940), our model achieves a superior fit (R\(^2\) = 0.973), demonstrating that diffusion resistance can significantly influence hydrolysis kinetics. By formulating the kinetic model in terms of explicit biochemical and mass-transfer parameters (\(r_{h,\text {max}}\), \(K_M\), \(k_d\), \(\alpha \)), it becomes possible to identify optimal operational strategies for enhancing hydrolysis efficiency. The results indicate that coupling enzymatic catalysis with diffusion provides a more accurate theoretical description than the first-order model and enables improved prediction of biopolymer solubilization in AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioEnergy Research
BioEnergy Research ENERGY & FUELS-ENVIRONMENTAL SCIENCES
CiteScore
6.70
自引率
8.30%
发文量
174
审稿时长
3 months
期刊介绍: BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信