{"title":"采用独特的耦合DEM/CFD技术研究应变率、自由水和骨料破碎对受压状态下混凝土动态行为的影响","authors":"Marek Krzaczek, Michał Nitka, Jacek Tejchman","doi":"10.1007/s10035-025-01555-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper examines the simultaneous impact of strain rate, aggregate fragmentation, and free water on the dynamic behavior of concrete in mesoscale uniaxial compression conditions. A concrete specimen measuring 50 × 50 mm<sup>2</sup> and having a low porosity of 5% was the subject of extensive two-dimensional (2D) dynamic investigations (that is, a research limitation). Its mesostructure was based on laboratory micro-CT images. Concrete’s fracture patterns, strength, brittleness, and fluid pressure distributions were all investigated. A mesoscopic pore-scale hydro-mechanical model based on a unique fully coupled DEM/CFD technique with breakable aggregate particles was utilized to study the behavior of partially or fully saturated concrete. A four-phase material comprising aggregate, mortar, ITZs, and macropores was used to replicate concrete. Groups of small spherical particles were used to simulate the fragmentation of aggregate particles with various shapes and sizes, allowing for intra-granular fracturing among them. A network of fluid channels was assumed in a continuous region between discrete elements. A two-phase laminar compressible fluid flow (air and water) in pores and cracks was suggested for wet concrete. The accurate volumes of pores and cracks were computed for tracking the liquid/gas content. Dynamic numerical compressive tests were performed with strain rates ranging between 1 1/s and 1000 1/s. Strain rate, aggregate fragmentation, and free water flow increased the dynamic compressive strength. Because of free water confinement in pores and cracks, the pore fluid pressures retarded a fracture process, enhancing the concrete dynamic strength.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-025-01555-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Impact of strain rate, free water, and aggregate fragmentation on the dynamic behavior of concrete in compression regime using a unique coupled DEM/CFD technique\",\"authors\":\"Marek Krzaczek, Michał Nitka, Jacek Tejchman\",\"doi\":\"10.1007/s10035-025-01555-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper examines the simultaneous impact of strain rate, aggregate fragmentation, and free water on the dynamic behavior of concrete in mesoscale uniaxial compression conditions. A concrete specimen measuring 50 × 50 mm<sup>2</sup> and having a low porosity of 5% was the subject of extensive two-dimensional (2D) dynamic investigations (that is, a research limitation). Its mesostructure was based on laboratory micro-CT images. Concrete’s fracture patterns, strength, brittleness, and fluid pressure distributions were all investigated. A mesoscopic pore-scale hydro-mechanical model based on a unique fully coupled DEM/CFD technique with breakable aggregate particles was utilized to study the behavior of partially or fully saturated concrete. A four-phase material comprising aggregate, mortar, ITZs, and macropores was used to replicate concrete. Groups of small spherical particles were used to simulate the fragmentation of aggregate particles with various shapes and sizes, allowing for intra-granular fracturing among them. A network of fluid channels was assumed in a continuous region between discrete elements. A two-phase laminar compressible fluid flow (air and water) in pores and cracks was suggested for wet concrete. The accurate volumes of pores and cracks were computed for tracking the liquid/gas content. Dynamic numerical compressive tests were performed with strain rates ranging between 1 1/s and 1000 1/s. Strain rate, aggregate fragmentation, and free water flow increased the dynamic compressive strength. Because of free water confinement in pores and cracks, the pore fluid pressures retarded a fracture process, enhancing the concrete dynamic strength.</p></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"27 3\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10035-025-01555-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-025-01555-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-025-01555-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of strain rate, free water, and aggregate fragmentation on the dynamic behavior of concrete in compression regime using a unique coupled DEM/CFD technique
This paper examines the simultaneous impact of strain rate, aggregate fragmentation, and free water on the dynamic behavior of concrete in mesoscale uniaxial compression conditions. A concrete specimen measuring 50 × 50 mm2 and having a low porosity of 5% was the subject of extensive two-dimensional (2D) dynamic investigations (that is, a research limitation). Its mesostructure was based on laboratory micro-CT images. Concrete’s fracture patterns, strength, brittleness, and fluid pressure distributions were all investigated. A mesoscopic pore-scale hydro-mechanical model based on a unique fully coupled DEM/CFD technique with breakable aggregate particles was utilized to study the behavior of partially or fully saturated concrete. A four-phase material comprising aggregate, mortar, ITZs, and macropores was used to replicate concrete. Groups of small spherical particles were used to simulate the fragmentation of aggregate particles with various shapes and sizes, allowing for intra-granular fracturing among them. A network of fluid channels was assumed in a continuous region between discrete elements. A two-phase laminar compressible fluid flow (air and water) in pores and cracks was suggested for wet concrete. The accurate volumes of pores and cracks were computed for tracking the liquid/gas content. Dynamic numerical compressive tests were performed with strain rates ranging between 1 1/s and 1000 1/s. Strain rate, aggregate fragmentation, and free water flow increased the dynamic compressive strength. Because of free water confinement in pores and cracks, the pore fluid pressures retarded a fracture process, enhancing the concrete dynamic strength.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.