高性能质子陶瓷电解池氧电极中钙钛矿氧化物的协同氧空位水化调节

IF 11 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lin-Lin Song, Rong-Zheng Ren, Zhen-Hua Wang, Jing Zhang, Jin-Shuo Qiao, Wang Sun, Ke-Ning Sun
{"title":"高性能质子陶瓷电解池氧电极中钙钛矿氧化物的协同氧空位水化调节","authors":"Lin-Lin Song,&nbsp;Rong-Zheng Ren,&nbsp;Zhen-Hua Wang,&nbsp;Jing Zhang,&nbsp;Jin-Shuo Qiao,&nbsp;Wang Sun,&nbsp;Ke-Ning Sun","doi":"10.1007/s12598-025-03363-2","DOIUrl":null,"url":null,"abstract":"<div><p>The proton ceramic electrochemical cell (PCEC), distinguished by its robust all-solid-state construction, emerges as a particularly promising contender in the realm of hydrogen production technologies. However, inadequate water-storage capability (hydration) and limited proton mobility within conventional PCEC oxygen electrodes hinder the efficiency of water splitting to oxygen, thereby restricting the broader application of PCECs. Here, we report a Ni-doped perovskite oxygen electrode Sr<sub>2</sub>Fe<sub>1.4</sub>Ni<sub>0.1</sub>Mo<sub>0.5</sub>O<sub>6-<i>δ</i></sub> (SFNM), where the incorporation of nickel can effectively amplify the concentration of oxygen vacancies while synergistically enhancing the hydration interaction between water molecules and the perovskite lattice. The enhanced hydration capacity facilitates proton-defect formation and lowers the energy barrier for proton migration. Benefiting from these synergistic enhancements, SFNM demonstrates a substantially reduced polarization resistance of approximately 0.078 Ω cm<sup>2</sup> at 700 °C under humidified conditions (<i>p</i>H<sub>2</sub>O = 0.1 atm). A PCEC utilizing the SFNM electrode achieves a remarkable current density of 2.60 A cm<sup>2</sup> with an applied voltage of 1.3 V at 700 °C. Furthermore, the PCEC exhibits favorable stability over a duration of 200 h. These outstanding results emphasize the potential of Ni doping to substantially improve both the hydration efficiency and proton mobility within perovskite electrode materials, positioning them as excellent candidates for high-performance PCECs.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 10","pages":"7242 - 7253"},"PeriodicalIF":11.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic oxygen vacancy-hydration regulation in perovskite oxide for high-performance protonic ceramic electrolysis cell oxygen electrode\",\"authors\":\"Lin-Lin Song,&nbsp;Rong-Zheng Ren,&nbsp;Zhen-Hua Wang,&nbsp;Jing Zhang,&nbsp;Jin-Shuo Qiao,&nbsp;Wang Sun,&nbsp;Ke-Ning Sun\",\"doi\":\"10.1007/s12598-025-03363-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The proton ceramic electrochemical cell (PCEC), distinguished by its robust all-solid-state construction, emerges as a particularly promising contender in the realm of hydrogen production technologies. However, inadequate water-storage capability (hydration) and limited proton mobility within conventional PCEC oxygen electrodes hinder the efficiency of water splitting to oxygen, thereby restricting the broader application of PCECs. Here, we report a Ni-doped perovskite oxygen electrode Sr<sub>2</sub>Fe<sub>1.4</sub>Ni<sub>0.1</sub>Mo<sub>0.5</sub>O<sub>6-<i>δ</i></sub> (SFNM), where the incorporation of nickel can effectively amplify the concentration of oxygen vacancies while synergistically enhancing the hydration interaction between water molecules and the perovskite lattice. The enhanced hydration capacity facilitates proton-defect formation and lowers the energy barrier for proton migration. Benefiting from these synergistic enhancements, SFNM demonstrates a substantially reduced polarization resistance of approximately 0.078 Ω cm<sup>2</sup> at 700 °C under humidified conditions (<i>p</i>H<sub>2</sub>O = 0.1 atm). A PCEC utilizing the SFNM electrode achieves a remarkable current density of 2.60 A cm<sup>2</sup> with an applied voltage of 1.3 V at 700 °C. Furthermore, the PCEC exhibits favorable stability over a duration of 200 h. These outstanding results emphasize the potential of Ni doping to substantially improve both the hydration efficiency and proton mobility within perovskite electrode materials, positioning them as excellent candidates for high-performance PCECs.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"44 10\",\"pages\":\"7242 - 7253\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-025-03363-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03363-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

质子陶瓷电化学电池(PCEC)以其坚固的全固态结构而闻名,在制氢技术领域成为一个特别有前途的竞争者。然而,在传统的PCEC氧电极中,水储存能力不足(水合作用)和质子迁移率有限阻碍了水分解成氧的效率,从而限制了PCEC的广泛应用。本文报道了一种镍掺杂的钙钛矿氧电极Sr2Fe1.4Ni0.1Mo0.5O6-δ (SFNM),其中镍的掺入可以有效地放大氧空位的浓度,同时协同增强水分子与钙钛矿晶格之间的水化相互作用。水合能力的增强促进了质子缺陷的形成,降低了质子迁移的能垒。受益于这些协同增强,SFNM在700°C加湿条件下(pH2O = 0.1 atm)的极化电阻显着降低了约0.078 Ω cm2。使用SFNM电极的PCEC在700°C时,在1.3 V的施加电压下实现了2.60 A cm2的显着电流密度。此外,PCEC在200小时内表现出良好的稳定性。这些突出的结果强调了Ni掺杂在钙钛矿电极材料中显著提高水化效率和质子迁移率的潜力,使其成为高性能PCEC的优秀候选者。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic oxygen vacancy-hydration regulation in perovskite oxide for high-performance protonic ceramic electrolysis cell oxygen electrode

The proton ceramic electrochemical cell (PCEC), distinguished by its robust all-solid-state construction, emerges as a particularly promising contender in the realm of hydrogen production technologies. However, inadequate water-storage capability (hydration) and limited proton mobility within conventional PCEC oxygen electrodes hinder the efficiency of water splitting to oxygen, thereby restricting the broader application of PCECs. Here, we report a Ni-doped perovskite oxygen electrode Sr2Fe1.4Ni0.1Mo0.5O6-δ (SFNM), where the incorporation of nickel can effectively amplify the concentration of oxygen vacancies while synergistically enhancing the hydration interaction between water molecules and the perovskite lattice. The enhanced hydration capacity facilitates proton-defect formation and lowers the energy barrier for proton migration. Benefiting from these synergistic enhancements, SFNM demonstrates a substantially reduced polarization resistance of approximately 0.078 Ω cm2 at 700 °C under humidified conditions (pH2O = 0.1 atm). A PCEC utilizing the SFNM electrode achieves a remarkable current density of 2.60 A cm2 with an applied voltage of 1.3 V at 700 °C. Furthermore, the PCEC exhibits favorable stability over a duration of 200 h. These outstanding results emphasize the potential of Ni doping to substantially improve both the hydration efficiency and proton mobility within perovskite electrode materials, positioning them as excellent candidates for high-performance PCECs.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信