选择合适的植物油和新型多元醇用于酯交换生产聚脂基生物转化油

IF 3 3区 工程技术 Q3 ENERGY & FUELS
Ratchayol Sornvoralop, Boonyawan Yoosuk, Napida Hinchiranan
{"title":"选择合适的植物油和新型多元醇用于酯交换生产聚脂基生物转化油","authors":"Ratchayol Sornvoralop,&nbsp;Boonyawan Yoosuk,&nbsp;Napida Hinchiranan","doi":"10.1007/s12155-025-10860-w","DOIUrl":null,"url":null,"abstract":"<div><p>According to rising electrical power consumption, attention to bio-transformer oil (BTO) is increasing due to higher environmental and ecological concerns. Thus, this research aimed to identify the appropriate plant-based oils and polyols to prepare BTO synthesized via two-step transesterification involving the transformation of plant-based oils into fatty acid methyl ester (FAME) with methanol and then reacting with polyols to produce polyolesters (POEs). The plant-based oils—palm kernel oil (PK), refined palm oil (RFP), high olein palm oil (HOP), sunflower oil (SF), and soybean oil (SB)—were reacted with various polyols, neopentyl glycol (NPG), trimethylolpropane (TMP), and di-trimethylolpropane (Di-TMP), to produce BTO in forms of neopentyl glycol diester (NPGDE), trimethylolpropane triester (TMPTE), and di-trimethylolpropane tetraester (Di-TMPTTE), respectively. Among these POEs, BTO with TMPTE structure had appropriate properties in terms of dielectric breakdown voltage, kinematic viscosity at 40 °C, and flash point following IEC 62770 specification. However, the pour point and oxidation stability of BTO derived from each FAME (PK-TMPTE: − 7 °C, 22 h/RFP-TMPTE: 19 °C, 35 h/HOP-TMPTE: 17 °C, 30 h/SF-TMPTE: − 14 °C, 3 h and SB-TMPTE: − 10 °C, 4 h, respectively) failed to meet specified standard requirements (≤ − 10 °C and ≥ 13 h). The balance between steric hindrance and unsaturation level generated from the polyols and plant-based oils was crucial in achieving BTO with the desired properties. A 70/30 (w/w) PK-TMPTE/SF-TMPTE blend ratio was observed as an optimal formulation to provide BTO having a low pour point (− 10 °C) and high oxidation stability (15 h), following the standard specification for transformer oil.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selection of Appropriate Plant-Based Oils and Neo-polyols for Transesterification to Produce Polyolesters-Based Bio-transformer Oil\",\"authors\":\"Ratchayol Sornvoralop,&nbsp;Boonyawan Yoosuk,&nbsp;Napida Hinchiranan\",\"doi\":\"10.1007/s12155-025-10860-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>According to rising electrical power consumption, attention to bio-transformer oil (BTO) is increasing due to higher environmental and ecological concerns. Thus, this research aimed to identify the appropriate plant-based oils and polyols to prepare BTO synthesized via two-step transesterification involving the transformation of plant-based oils into fatty acid methyl ester (FAME) with methanol and then reacting with polyols to produce polyolesters (POEs). The plant-based oils—palm kernel oil (PK), refined palm oil (RFP), high olein palm oil (HOP), sunflower oil (SF), and soybean oil (SB)—were reacted with various polyols, neopentyl glycol (NPG), trimethylolpropane (TMP), and di-trimethylolpropane (Di-TMP), to produce BTO in forms of neopentyl glycol diester (NPGDE), trimethylolpropane triester (TMPTE), and di-trimethylolpropane tetraester (Di-TMPTTE), respectively. Among these POEs, BTO with TMPTE structure had appropriate properties in terms of dielectric breakdown voltage, kinematic viscosity at 40 °C, and flash point following IEC 62770 specification. However, the pour point and oxidation stability of BTO derived from each FAME (PK-TMPTE: − 7 °C, 22 h/RFP-TMPTE: 19 °C, 35 h/HOP-TMPTE: 17 °C, 30 h/SF-TMPTE: − 14 °C, 3 h and SB-TMPTE: − 10 °C, 4 h, respectively) failed to meet specified standard requirements (≤ − 10 °C and ≥ 13 h). The balance between steric hindrance and unsaturation level generated from the polyols and plant-based oils was crucial in achieving BTO with the desired properties. A 70/30 (w/w) PK-TMPTE/SF-TMPTE blend ratio was observed as an optimal formulation to provide BTO having a low pour point (− 10 °C) and high oxidation stability (15 h), following the standard specification for transformer oil.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":487,\"journal\":{\"name\":\"BioEnergy Research\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioEnergy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12155-025-10860-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-025-10860-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着电力消耗的增加,生物变压器油(BTO)受到越来越多的关注,因为对环境和生态的关注越来越高。因此,本研究旨在确定合适的植物油和多元醇,通过两步酯交换法合成BTO,即植物油与甲醇转化为脂肪酸甲酯(FAME),然后与多元醇反应生成多元酯(poe)。植物基油——棕榈仁油(PK)、精炼棕榈油(RFP)、高油质棕榈油(HOP)、葵花籽油(SF)和大豆油(SB)——与各种多元醇、新戊二醇(NPG)、三甲基丙烷(TMP)和二三甲基丙烷(Di-TMP)反应,分别生成新戊二醇二酯(NPGDE)、三甲基丙烷三酯(TMPTE)和二三甲基丙烷四酯(Di-TMPTTE)形式的BTO。在这些poe中,TMPTE结构的BTO在介电击穿电压、40℃运动粘度和闪点方面具有合适的性能,符合IEC 62770规范。然而,各FAME (pktmpte:−7°C, 22 h/RFP-TMPTE: 19°C, 35 h/HOP-TMPTE: 17°C, 30 h/SF-TMPTE:−14°C, 3 h和SB-TMPTE:−10°C, 4 h)衍生的BTO的倾点和氧化稳定性均未达到规定的标准要求(≤−10°C和≥13 h)。多元醇和植物油产生的空间位阻和不饱和水平之间的平衡对于实现具有所需性能的BTO至关重要。根据变压器油的标准规格,70/30 (w/w)的pktmpte /SF-TMPTE混合比例是提供低倾点(- 10°C)和高氧化稳定性(15小时)的BTO的最佳配方。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Selection of Appropriate Plant-Based Oils and Neo-polyols for Transesterification to Produce Polyolesters-Based Bio-transformer Oil

Selection of Appropriate Plant-Based Oils and Neo-polyols for Transesterification to Produce Polyolesters-Based Bio-transformer Oil

According to rising electrical power consumption, attention to bio-transformer oil (BTO) is increasing due to higher environmental and ecological concerns. Thus, this research aimed to identify the appropriate plant-based oils and polyols to prepare BTO synthesized via two-step transesterification involving the transformation of plant-based oils into fatty acid methyl ester (FAME) with methanol and then reacting with polyols to produce polyolesters (POEs). The plant-based oils—palm kernel oil (PK), refined palm oil (RFP), high olein palm oil (HOP), sunflower oil (SF), and soybean oil (SB)—were reacted with various polyols, neopentyl glycol (NPG), trimethylolpropane (TMP), and di-trimethylolpropane (Di-TMP), to produce BTO in forms of neopentyl glycol diester (NPGDE), trimethylolpropane triester (TMPTE), and di-trimethylolpropane tetraester (Di-TMPTTE), respectively. Among these POEs, BTO with TMPTE structure had appropriate properties in terms of dielectric breakdown voltage, kinematic viscosity at 40 °C, and flash point following IEC 62770 specification. However, the pour point and oxidation stability of BTO derived from each FAME (PK-TMPTE: − 7 °C, 22 h/RFP-TMPTE: 19 °C, 35 h/HOP-TMPTE: 17 °C, 30 h/SF-TMPTE: − 14 °C, 3 h and SB-TMPTE: − 10 °C, 4 h, respectively) failed to meet specified standard requirements (≤ − 10 °C and ≥ 13 h). The balance between steric hindrance and unsaturation level generated from the polyols and plant-based oils was crucial in achieving BTO with the desired properties. A 70/30 (w/w) PK-TMPTE/SF-TMPTE blend ratio was observed as an optimal formulation to provide BTO having a low pour point (− 10 °C) and high oxidation stability (15 h), following the standard specification for transformer oil.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioEnergy Research
BioEnergy Research ENERGY & FUELS-ENVIRONMENTAL SCIENCES
CiteScore
6.70
自引率
8.30%
发文量
174
审稿时长
3 months
期刊介绍: BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信