几何最后通道渗流中非平凡双无穷测地线的不存在性

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Sean Groathouse, Christopher Janjigian, Firas Rassoul-Agha
{"title":"几何最后通道渗流中非平凡双无穷测地线的不存在性","authors":"Sean Groathouse,&nbsp;Christopher Janjigian,&nbsp;Firas Rassoul-Agha","doi":"10.1007/s10955-025-03462-5","DOIUrl":null,"url":null,"abstract":"<div><p>We show the non-existence of non-trivial bi-infinite geodesics in the solvable last-passage percolation model with i.i.d. geometric weights. This gives the first example of a model with discrete weights where the non-existence of non-trivial bi-infinite geodesics has been proven. Our proofs rely on the structure of the increment-stationary versions of the model, following the approach recently introduced by Balázs, Busani, and Seppäläinen. Most of our results work for a general weights distribution and we identify the two properties of the stationary distributions which would need to be shown in order to generalize the main result to a non-solvable setting.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Existence of Non-Trivial Bi-Infinite Geodesics in Geometric Last Passage Percolation\",\"authors\":\"Sean Groathouse,&nbsp;Christopher Janjigian,&nbsp;Firas Rassoul-Agha\",\"doi\":\"10.1007/s10955-025-03462-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show the non-existence of non-trivial bi-infinite geodesics in the solvable last-passage percolation model with i.i.d. geometric weights. This gives the first example of a model with discrete weights where the non-existence of non-trivial bi-infinite geodesics has been proven. Our proofs rely on the structure of the increment-stationary versions of the model, following the approach recently introduced by Balázs, Busani, and Seppäläinen. Most of our results work for a general weights distribution and we identify the two properties of the stationary distributions which would need to be shown in order to generalize the main result to a non-solvable setting.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 6\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03462-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03462-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在具有几何权重的可解最后通道渗流模型中,证明了非平凡双无穷测地线的不存在性。本文给出了第一个证明非平凡双无穷测地线不存在的离散权模型的例子。我们的证明依赖于模型的增量平稳版本的结构,遵循Balázs、Busani和Seppäläinen最近引入的方法。我们的大多数结果适用于一般权重分布,我们确定了平稳分布的两个属性,为了将主要结果推广到不可解的设置,这两个属性需要显示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Non-Existence of Non-Trivial Bi-Infinite Geodesics in Geometric Last Passage Percolation

Non-Existence of Non-Trivial Bi-Infinite Geodesics in Geometric Last Passage Percolation

We show the non-existence of non-trivial bi-infinite geodesics in the solvable last-passage percolation model with i.i.d. geometric weights. This gives the first example of a model with discrete weights where the non-existence of non-trivial bi-infinite geodesics has been proven. Our proofs rely on the structure of the increment-stationary versions of the model, following the approach recently introduced by Balázs, Busani, and Seppäläinen. Most of our results work for a general weights distribution and we identify the two properties of the stationary distributions which would need to be shown in order to generalize the main result to a non-solvable setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信