基于混叠光谱解耦模型和特征值提取的近红外变压器故障气体C2H4/CH4传感器

IF 2 3区 物理与天体物理 Q3 OPTICS
Guolin Li, Longju Li, Jiarui Li, Yingjie Zhao, Ruixiang Sun, Haoran Yuan, Guangzhao Cui, Jianyu Gu, Jinxu Yang, Wenxuan Zhao, Xin Zhang
{"title":"基于混叠光谱解耦模型和特征值提取的近红外变压器故障气体C2H4/CH4传感器","authors":"Guolin Li,&nbsp;Longju Li,&nbsp;Jiarui Li,&nbsp;Yingjie Zhao,&nbsp;Ruixiang Sun,&nbsp;Haoran Yuan,&nbsp;Guangzhao Cui,&nbsp;Jianyu Gu,&nbsp;Jinxu Yang,&nbsp;Wenxuan Zhao,&nbsp;Xin Zhang","doi":"10.1007/s00340-025-08492-1","DOIUrl":null,"url":null,"abstract":"<div><p>A C<sub>2</sub>H<sub>4</sub>/CH<sub>4</sub> two-component synchronous monitoring sensor based on aliasing spectra decoupling model is designed. The distributed feedback (DFB) laser with the central wavelength of 1626 nm and the multi-pass gas cell (MPGC) with an effective optical path of 20 m are integrated into the sensor. The aliasing spectra decoupling model effectively decouples second harmonic (2f) signals, and its decoupling performance is validated through carrying out concentration monitoring experiments of mixed gases C<sub>2</sub>H<sub>4</sub> and CH<sub>4</sub>, where the concentration range of C<sub>2</sub>H<sub>4</sub> is 4–100 ppm and the CH<sub>4</sub> is 20–500 ppm. Under the background of severe aliasing of C<sub>2</sub>H<sub>4</sub> and CH<sub>4</sub> absorption lines, the sensor can still achieve high-precision inversion of each single gas. Among them, the root-mean-square error (RMSE) of C<sub>2</sub>H<sub>4</sub> is 0.7491 ppm, while for CH<sub>4</sub> it is 10.4028 ppm. In comparison to the least squares method, the precision of concentration inversion is significantly enhanced. This indicates that the aliasing spectra decoupling model is capable of mitigating the impact of aliasing absorption lines on the accuracy of concentration inversion.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"131 7","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A near-infrared transformer fault gases C2H4/CH4 sensor based on aliasing spectra decoupling model with eigenvalues extraction\",\"authors\":\"Guolin Li,&nbsp;Longju Li,&nbsp;Jiarui Li,&nbsp;Yingjie Zhao,&nbsp;Ruixiang Sun,&nbsp;Haoran Yuan,&nbsp;Guangzhao Cui,&nbsp;Jianyu Gu,&nbsp;Jinxu Yang,&nbsp;Wenxuan Zhao,&nbsp;Xin Zhang\",\"doi\":\"10.1007/s00340-025-08492-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A C<sub>2</sub>H<sub>4</sub>/CH<sub>4</sub> two-component synchronous monitoring sensor based on aliasing spectra decoupling model is designed. The distributed feedback (DFB) laser with the central wavelength of 1626 nm and the multi-pass gas cell (MPGC) with an effective optical path of 20 m are integrated into the sensor. The aliasing spectra decoupling model effectively decouples second harmonic (2f) signals, and its decoupling performance is validated through carrying out concentration monitoring experiments of mixed gases C<sub>2</sub>H<sub>4</sub> and CH<sub>4</sub>, where the concentration range of C<sub>2</sub>H<sub>4</sub> is 4–100 ppm and the CH<sub>4</sub> is 20–500 ppm. Under the background of severe aliasing of C<sub>2</sub>H<sub>4</sub> and CH<sub>4</sub> absorption lines, the sensor can still achieve high-precision inversion of each single gas. Among them, the root-mean-square error (RMSE) of C<sub>2</sub>H<sub>4</sub> is 0.7491 ppm, while for CH<sub>4</sub> it is 10.4028 ppm. In comparison to the least squares method, the precision of concentration inversion is significantly enhanced. This indicates that the aliasing spectra decoupling model is capable of mitigating the impact of aliasing absorption lines on the accuracy of concentration inversion.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":474,\"journal\":{\"name\":\"Applied Physics B\",\"volume\":\"131 7\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00340-025-08492-1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-025-08492-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

设计了一种基于混叠光谱解耦模型的C2H4/CH4双组分同步监测传感器。该传感器集成了中心波长为1626 nm的分布式反馈(DFB)激光器和有效光程为20 m的多通气体电池(MPGC)。混叠谱解耦模型能有效解耦二次谐波(2f)信号,并通过C2H4和CH4混合气体浓度监测实验验证了其解耦效果,C2H4浓度范围为4 ~ 100 ppm, CH4浓度范围为20 ~ 500 ppm。在C2H4和CH4吸收谱线混叠严重的背景下,该传感器仍能实现对各单一气体的高精度反演。其中,C2H4的均方根误差(RMSE)为0.7491 ppm, CH4的均方根误差为10.4028 ppm。与最小二乘法相比,浓度反演的精度显著提高。这表明混叠光谱解耦模型能够减轻混叠吸收线对浓度反演精度的影响。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A near-infrared transformer fault gases C2H4/CH4 sensor based on aliasing spectra decoupling model with eigenvalues extraction

A near-infrared transformer fault gases C2H4/CH4 sensor based on aliasing spectra decoupling model with eigenvalues extraction

A C2H4/CH4 two-component synchronous monitoring sensor based on aliasing spectra decoupling model is designed. The distributed feedback (DFB) laser with the central wavelength of 1626 nm and the multi-pass gas cell (MPGC) with an effective optical path of 20 m are integrated into the sensor. The aliasing spectra decoupling model effectively decouples second harmonic (2f) signals, and its decoupling performance is validated through carrying out concentration monitoring experiments of mixed gases C2H4 and CH4, where the concentration range of C2H4 is 4–100 ppm and the CH4 is 20–500 ppm. Under the background of severe aliasing of C2H4 and CH4 absorption lines, the sensor can still achieve high-precision inversion of each single gas. Among them, the root-mean-square error (RMSE) of C2H4 is 0.7491 ppm, while for CH4 it is 10.4028 ppm. In comparison to the least squares method, the precision of concentration inversion is significantly enhanced. This indicates that the aliasing spectra decoupling model is capable of mitigating the impact of aliasing absorption lines on the accuracy of concentration inversion.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics B
Applied Physics B 物理-光学
CiteScore
4.00
自引率
4.80%
发文量
202
审稿时长
3.0 months
期刊介绍: Features publication of experimental and theoretical investigations in applied physics Offers invited reviews in addition to regular papers Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more 94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field. In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信