非弹性玻尔兹曼方程冷却过程的定量点态估计

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Gayoung An, Jin Woo Jang, Donghyun Lee
{"title":"非弹性玻尔兹曼方程冷却过程的定量点态估计","authors":"Gayoung An,&nbsp;Jin Woo Jang,&nbsp;Donghyun Lee","doi":"10.1007/s10955-025-03494-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the homogeneous inelastic Boltzmann equation for hard spheres. We first prove that the solution <i>f</i>(<i>t</i>, <i>v</i>) is bounded pointwise from above by <span>\\(C_{f_0}\\langle t \\rangle ^3\\)</span> and establish that the cooling time is infinite (<span>\\( T_c = +\\infty \\)</span>) under the condition <span>\\( f_0 \\in L^1_2 \\cap L^{\\infty }_{s} \\)</span> for <span>\\( s &gt; 2 \\)</span>. Away from zero velocity, we further prove that <span>\\( f(t,v)\\le C_{f_0, |v|} \\langle t \\rangle \\)</span> for <span>\\(v \\ne 0\\)</span> at any time <span>\\( t &gt; 0 \\)</span>. This time-dependent pointwise upper bound is natural in the cooling process, as we expect the density near <span>\\( v = 0 \\)</span> to grow rapidly. We also establish an upper bound that depends on the coefficient of normal restitution constant, <span>\\(\\alpha \\in (0,1]\\)</span>. This upper bound becomes constant when <span>\\(\\alpha = 1\\)</span>, restoring the known upper bound for elastic collisions [8]. Consequently, through these results, we obtain Maxwellian upper bounds on the solutions at each time.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 8","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Pointwise Estimates of the Cooling Process for Inelastic Boltzmann Equation\",\"authors\":\"Gayoung An,&nbsp;Jin Woo Jang,&nbsp;Donghyun Lee\",\"doi\":\"10.1007/s10955-025-03494-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the homogeneous inelastic Boltzmann equation for hard spheres. We first prove that the solution <i>f</i>(<i>t</i>, <i>v</i>) is bounded pointwise from above by <span>\\\\(C_{f_0}\\\\langle t \\\\rangle ^3\\\\)</span> and establish that the cooling time is infinite (<span>\\\\( T_c = +\\\\infty \\\\)</span>) under the condition <span>\\\\( f_0 \\\\in L^1_2 \\\\cap L^{\\\\infty }_{s} \\\\)</span> for <span>\\\\( s &gt; 2 \\\\)</span>. Away from zero velocity, we further prove that <span>\\\\( f(t,v)\\\\le C_{f_0, |v|} \\\\langle t \\\\rangle \\\\)</span> for <span>\\\\(v \\\\ne 0\\\\)</span> at any time <span>\\\\( t &gt; 0 \\\\)</span>. This time-dependent pointwise upper bound is natural in the cooling process, as we expect the density near <span>\\\\( v = 0 \\\\)</span> to grow rapidly. We also establish an upper bound that depends on the coefficient of normal restitution constant, <span>\\\\(\\\\alpha \\\\in (0,1]\\\\)</span>. This upper bound becomes constant when <span>\\\\(\\\\alpha = 1\\\\)</span>, restoring the known upper bound for elastic collisions [8]. Consequently, through these results, we obtain Maxwellian upper bounds on the solutions at each time.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 8\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03494-x\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03494-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了硬球的齐次非弹性玻尔兹曼方程。我们首先证明了解f(t, v)从上到下由\(C_{f_0}\langle t \rangle ^3\)点有界,并建立了在\( s > 2 \)的条件\( f_0 \in L^1_2 \cap L^{\infty }_{s} \)下冷却时间是无限的(\( T_c = +\infty \))。远离零速度,我们进一步证明\( f(t,v)\le C_{f_0, |v|} \langle t \rangle \)对于\(v \ne 0\)在任何时间\( t > 0 \)。这个随时间变化的点的上界在冷却过程中是很自然的,因为我们预计\( v = 0 \)附近的密度会迅速增长。我们还建立了一个依赖于正常恢复常数系数\(\alpha \in (0,1]\)的上界。当\(\alpha = 1\)时,该上界变为常数,恢复弹性碰撞[8]的已知上界。因此,通过这些结果,我们得到了每次解的麦克斯韦上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantitative Pointwise Estimates of the Cooling Process for Inelastic Boltzmann Equation

Quantitative Pointwise Estimates of the Cooling Process for Inelastic Boltzmann Equation

In this paper, we study the homogeneous inelastic Boltzmann equation for hard spheres. We first prove that the solution f(tv) is bounded pointwise from above by \(C_{f_0}\langle t \rangle ^3\) and establish that the cooling time is infinite (\( T_c = +\infty \)) under the condition \( f_0 \in L^1_2 \cap L^{\infty }_{s} \) for \( s > 2 \). Away from zero velocity, we further prove that \( f(t,v)\le C_{f_0, |v|} \langle t \rangle \) for \(v \ne 0\) at any time \( t > 0 \). This time-dependent pointwise upper bound is natural in the cooling process, as we expect the density near \( v = 0 \) to grow rapidly. We also establish an upper bound that depends on the coefficient of normal restitution constant, \(\alpha \in (0,1]\). This upper bound becomes constant when \(\alpha = 1\), restoring the known upper bound for elastic collisions [8]. Consequently, through these results, we obtain Maxwellian upper bounds on the solutions at each time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信