多重刺激响应的羧甲基纤维素/κ-卡拉胶纳米凝胶与磁性氧化石墨烯集成用于结肠特异性递送舒尼替尼

IF 4.8 2区 工程技术 Q1 MATERIALS SCIENCE, PAPER & WOOD
Nuran Işıklan, Harun Aytekin, Ömer Sonkaya, Enes Güncüm
{"title":"多重刺激响应的羧甲基纤维素/κ-卡拉胶纳米凝胶与磁性氧化石墨烯集成用于结肠特异性递送舒尼替尼","authors":"Nuran Işıklan,&nbsp;Harun Aytekin,&nbsp;Ömer Sonkaya,&nbsp;Enes Güncüm","doi":"10.1007/s10570-025-06635-3","DOIUrl":null,"url":null,"abstract":"<div><p>The multi-stimuli-responsive nanohydrogels provide a powerful strategy for enhancing drug utilization, preservation, controlled release, and minimizing systemic toxicity. Herein, we designed and developed a new multi-stimuli-responsive magnetic graphene oxide (MGO) integrated carboxymethyl cellulose/κ-carrageenan (CMC/CG/MGO) nanogels (NGs) for colon-specific delivery of sunitinib (SU). The physicochemical properties of the CMC/CG/MGO NGs were investigated by various analytical techniques of XRD, FTIR, TGA VSM, DLS, BET, and FESEM/TEM. The in-vitro SU release results exhibited that the CMC/CG/MGO NGs have a sustained release behavior with good pH, magnetic field, and near-infrared (NIR) light-dependent properties. The integrated photothermal agent MGO endowed the CMC/CG NGs with efficient photothermal properties, enabling precise SU release control under NIR laser irradiation. The CMC/CG/MGO/SU NGs displayed a good photothermal conversion effect (η = 38.5%). Besides, the CMC/CG/MGO NGs were not cytotoxic (cell viability &gt; 73% at 15.6–500 ppm) for the L929 fibroblast and Caco-2 cell lines. The MTT results also revealed that the CMC/CG/MGO/SU NGs exhibited enhanced anti-cancer activity compared to free SU under NIR laser irradiation. These results highlight the potential of CMC/CG/MGO/SU NGs as a promising candidate for remotely controlled multi-stimuli-responsive drug delivery.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"32 11","pages":"6727 - 6751"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10570-025-06635-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-stimuli-responsive carboxymethyl cellulose/κ-carrageenan nanogels integrated with magnetic graphene oxide for colon-specific delivery of sunitinib\",\"authors\":\"Nuran Işıklan,&nbsp;Harun Aytekin,&nbsp;Ömer Sonkaya,&nbsp;Enes Güncüm\",\"doi\":\"10.1007/s10570-025-06635-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The multi-stimuli-responsive nanohydrogels provide a powerful strategy for enhancing drug utilization, preservation, controlled release, and minimizing systemic toxicity. Herein, we designed and developed a new multi-stimuli-responsive magnetic graphene oxide (MGO) integrated carboxymethyl cellulose/κ-carrageenan (CMC/CG/MGO) nanogels (NGs) for colon-specific delivery of sunitinib (SU). The physicochemical properties of the CMC/CG/MGO NGs were investigated by various analytical techniques of XRD, FTIR, TGA VSM, DLS, BET, and FESEM/TEM. The in-vitro SU release results exhibited that the CMC/CG/MGO NGs have a sustained release behavior with good pH, magnetic field, and near-infrared (NIR) light-dependent properties. The integrated photothermal agent MGO endowed the CMC/CG NGs with efficient photothermal properties, enabling precise SU release control under NIR laser irradiation. The CMC/CG/MGO/SU NGs displayed a good photothermal conversion effect (η = 38.5%). Besides, the CMC/CG/MGO NGs were not cytotoxic (cell viability &gt; 73% at 15.6–500 ppm) for the L929 fibroblast and Caco-2 cell lines. The MTT results also revealed that the CMC/CG/MGO/SU NGs exhibited enhanced anti-cancer activity compared to free SU under NIR laser irradiation. These results highlight the potential of CMC/CG/MGO/SU NGs as a promising candidate for remotely controlled multi-stimuli-responsive drug delivery.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":511,\"journal\":{\"name\":\"Cellulose\",\"volume\":\"32 11\",\"pages\":\"6727 - 6751\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10570-025-06635-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10570-025-06635-3\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-025-06635-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

摘要

多刺激反应纳米水凝胶为提高药物利用率、保存、控制释放和减少全身毒性提供了强有力的策略。在此,我们设计并开发了一种新的多刺激响应磁性氧化石墨烯(MGO)集成羧甲基纤维素/κ-卡拉胶(CMC/CG/MGO)纳米凝胶(ng)用于结肠特异性递送舒尼替尼(SU)。采用XRD、FTIR、TGA、VSM、DLS、BET、FESEM/TEM等多种分析技术对CMC/CG/MGO纳米颗粒的理化性质进行了研究。体外SU释放结果表明,CMC/CG/MGO纳米颗粒具有良好的pH、磁场和近红外(NIR)光依赖性等缓释特性。集成光热剂MGO使CMC/CG纳米颗粒具有高效的光热性能,能够在近红外激光照射下精确控制SU释放。CMC/CG/MGO/SU NGs具有良好的光热转化效果(η = 38.5%)。此外,CMC/CG/MGO NGs对L929成纤维细胞和Caco-2细胞系没有细胞毒性(15.6-500 ppm时细胞存活率为73%)。MTT实验结果还显示,在近红外激光照射下,CMC/CG/MGO/SU纳米粒子比游离SU纳米粒子具有更强的抗癌活性。这些结果突出了CMC/CG/MGO/SU纳米颗粒作为远程控制多刺激反应性药物递送的潜力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-stimuli-responsive carboxymethyl cellulose/κ-carrageenan nanogels integrated with magnetic graphene oxide for colon-specific delivery of sunitinib

The multi-stimuli-responsive nanohydrogels provide a powerful strategy for enhancing drug utilization, preservation, controlled release, and minimizing systemic toxicity. Herein, we designed and developed a new multi-stimuli-responsive magnetic graphene oxide (MGO) integrated carboxymethyl cellulose/κ-carrageenan (CMC/CG/MGO) nanogels (NGs) for colon-specific delivery of sunitinib (SU). The physicochemical properties of the CMC/CG/MGO NGs were investigated by various analytical techniques of XRD, FTIR, TGA VSM, DLS, BET, and FESEM/TEM. The in-vitro SU release results exhibited that the CMC/CG/MGO NGs have a sustained release behavior with good pH, magnetic field, and near-infrared (NIR) light-dependent properties. The integrated photothermal agent MGO endowed the CMC/CG NGs with efficient photothermal properties, enabling precise SU release control under NIR laser irradiation. The CMC/CG/MGO/SU NGs displayed a good photothermal conversion effect (η = 38.5%). Besides, the CMC/CG/MGO NGs were not cytotoxic (cell viability > 73% at 15.6–500 ppm) for the L929 fibroblast and Caco-2 cell lines. The MTT results also revealed that the CMC/CG/MGO/SU NGs exhibited enhanced anti-cancer activity compared to free SU under NIR laser irradiation. These results highlight the potential of CMC/CG/MGO/SU NGs as a promising candidate for remotely controlled multi-stimuli-responsive drug delivery.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellulose
Cellulose 工程技术-材料科学:纺织
CiteScore
10.10
自引率
10.50%
发文量
580
审稿时长
3-8 weeks
期刊介绍: Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信