{"title":"一种能量步进马尔可夫蒙特卡罗方法","authors":"Ignacio Romero, Michael Ortiz","doi":"10.1007/s11012-025-01997-1","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the energy-stepping Monte Carlo (ESMC) method, a Markov chain Monte Carlo (MCMC) algorithm based on the conventional dynamical interpretation of the proposal stage but employing an energy-stepping integrator. The energy-stepping integrator is quasi-explicit, symplectic, energy-conserving, and symmetry-preserving. As a result of the exact energy conservation of energy-stepping integrators, ESMC has a 100% acceptance ratio of the proposal states. Numerical tests provide empirical evidence that ESMC affords a number of additional benefits: the Markov chains it generates have weak autocorrelation, it has the ability to explore distant characteristic sets of the sampled probability distribution and it yields smaller errors than chains sampled with Hamiltonian Monte Carlo (HMC) and similar step sizes. Finally, ESMC benefits from the exact symmetry conservation properties of the energy-stepping integrator when sampling from potentials with built-in symmetries, whether explicitly known or not.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"60 5","pages":"1411 - 1436"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11012-025-01997-1.pdf","citationCount":"0","resultStr":"{\"title\":\"An energy-stepping Markov Monte Carlo method\",\"authors\":\"Ignacio Romero, Michael Ortiz\",\"doi\":\"10.1007/s11012-025-01997-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce the energy-stepping Monte Carlo (ESMC) method, a Markov chain Monte Carlo (MCMC) algorithm based on the conventional dynamical interpretation of the proposal stage but employing an energy-stepping integrator. The energy-stepping integrator is quasi-explicit, symplectic, energy-conserving, and symmetry-preserving. As a result of the exact energy conservation of energy-stepping integrators, ESMC has a 100% acceptance ratio of the proposal states. Numerical tests provide empirical evidence that ESMC affords a number of additional benefits: the Markov chains it generates have weak autocorrelation, it has the ability to explore distant characteristic sets of the sampled probability distribution and it yields smaller errors than chains sampled with Hamiltonian Monte Carlo (HMC) and similar step sizes. Finally, ESMC benefits from the exact symmetry conservation properties of the energy-stepping integrator when sampling from potentials with built-in symmetries, whether explicitly known or not.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"60 5\",\"pages\":\"1411 - 1436\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11012-025-01997-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-025-01997-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-025-01997-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
We introduce the energy-stepping Monte Carlo (ESMC) method, a Markov chain Monte Carlo (MCMC) algorithm based on the conventional dynamical interpretation of the proposal stage but employing an energy-stepping integrator. The energy-stepping integrator is quasi-explicit, symplectic, energy-conserving, and symmetry-preserving. As a result of the exact energy conservation of energy-stepping integrators, ESMC has a 100% acceptance ratio of the proposal states. Numerical tests provide empirical evidence that ESMC affords a number of additional benefits: the Markov chains it generates have weak autocorrelation, it has the ability to explore distant characteristic sets of the sampled probability distribution and it yields smaller errors than chains sampled with Hamiltonian Monte Carlo (HMC) and similar step sizes. Finally, ESMC benefits from the exact symmetry conservation properties of the energy-stepping integrator when sampling from potentials with built-in symmetries, whether explicitly known or not.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.