{"title":"人体胃内液体流动、食物消化和药物溶解的计算机研究","authors":"Changyong Li, Jie Xiao, Xiao Dong Chen, Yan Jin","doi":"10.1007/s12393-024-09393-3","DOIUrl":null,"url":null,"abstract":"<div><p>This review article explores the significant role of in silico simulations as complements to in vivo and in vitro experiments, particularly in enhancing our understanding of gastric flow, digestion, and drug dissolution. By synthesizing decades of research on numerical stomach models, this paper highlights the profound impact computational fluid dynamics (CFD) and other simulation techniques have on elucidating the influence of gastric motility and the physical properties of stomach contents on nutrient absorption and drug release. These simulation studies provide more detailed information for us to advance our understanding of drug delivery in stomach and to support the formulation of functional foods tailored for specific metabolic health requirements. Additionally, these models offer valuable forecasts that aid in refining surgical methods and therapeutic approaches, especially for managing conditions such as gastroparesis. By advancing our fundamental understanding of digestive mechanisms, in silico studies contribute significantly to the development of innovative treatments and the enhanced management of gastrointestinal disorders, underscoring the transformative potential of computational tools in nutritional science and biomedicine.</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"17 2","pages":"450 - 464"},"PeriodicalIF":7.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Silico Studies of Fluid Flow, Digestion of Food and Drug Dissolution in Human Stomach\",\"authors\":\"Changyong Li, Jie Xiao, Xiao Dong Chen, Yan Jin\",\"doi\":\"10.1007/s12393-024-09393-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review article explores the significant role of in silico simulations as complements to in vivo and in vitro experiments, particularly in enhancing our understanding of gastric flow, digestion, and drug dissolution. By synthesizing decades of research on numerical stomach models, this paper highlights the profound impact computational fluid dynamics (CFD) and other simulation techniques have on elucidating the influence of gastric motility and the physical properties of stomach contents on nutrient absorption and drug release. These simulation studies provide more detailed information for us to advance our understanding of drug delivery in stomach and to support the formulation of functional foods tailored for specific metabolic health requirements. Additionally, these models offer valuable forecasts that aid in refining surgical methods and therapeutic approaches, especially for managing conditions such as gastroparesis. By advancing our fundamental understanding of digestive mechanisms, in silico studies contribute significantly to the development of innovative treatments and the enhanced management of gastrointestinal disorders, underscoring the transformative potential of computational tools in nutritional science and biomedicine.</p></div>\",\"PeriodicalId\":565,\"journal\":{\"name\":\"Food Engineering Reviews\",\"volume\":\"17 2\",\"pages\":\"450 - 464\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Engineering Reviews\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12393-024-09393-3\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Engineering Reviews","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12393-024-09393-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
In Silico Studies of Fluid Flow, Digestion of Food and Drug Dissolution in Human Stomach
This review article explores the significant role of in silico simulations as complements to in vivo and in vitro experiments, particularly in enhancing our understanding of gastric flow, digestion, and drug dissolution. By synthesizing decades of research on numerical stomach models, this paper highlights the profound impact computational fluid dynamics (CFD) and other simulation techniques have on elucidating the influence of gastric motility and the physical properties of stomach contents on nutrient absorption and drug release. These simulation studies provide more detailed information for us to advance our understanding of drug delivery in stomach and to support the formulation of functional foods tailored for specific metabolic health requirements. Additionally, these models offer valuable forecasts that aid in refining surgical methods and therapeutic approaches, especially for managing conditions such as gastroparesis. By advancing our fundamental understanding of digestive mechanisms, in silico studies contribute significantly to the development of innovative treatments and the enhanced management of gastrointestinal disorders, underscoring the transformative potential of computational tools in nutritional science and biomedicine.
期刊介绍:
Food Engineering Reviews publishes articles encompassing all engineering aspects of today’s scientific food research. The journal focuses on both classic and modern food engineering topics, exploring essential factors such as the health, nutritional, and environmental aspects of food processing. Trends that will drive the discipline over time, from the lab to industrial implementation, are identified and discussed. The scope of topics addressed is broad, including transport phenomena in food processing; food process engineering; physical properties of foods; food nano-science and nano-engineering; food equipment design; food plant design; modeling food processes; microbial inactivation kinetics; preservation technologies; engineering aspects of food packaging; shelf-life, storage and distribution of foods; instrumentation, control and automation in food processing; food engineering, health and nutrition; energy and economic considerations in food engineering; sustainability; and food engineering education.