具有大外势和边界效应的玻尔兹曼方程的大振幅解

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Jong-in Kim, Donghyun Lee
{"title":"具有大外势和边界效应的玻尔兹曼方程的大振幅解","authors":"Jong-in Kim,&nbsp;Donghyun Lee","doi":"10.1007/s10955-025-03459-0","DOIUrl":null,"url":null,"abstract":"<div><p>The Boltzmann equation is a fundamental equation in kinetic theory that describes the motion of rarefied gases. In this study, we examine the Boltzmann equation within a <span>\\(C^{1}\\)</span> bounded domain, subject to a large external potential <span>\\(\\Phi (x)\\)</span> and diffuse reflection boundary conditions. Initially, we prove the asymptotic stability of small perturbations near the local Maxwellian <span>\\(\\mu _{E}(x,v)\\)</span>. Subsequently, we demonstrate the asymptotic stability of large amplitude solutions with initial data that is arbitrarily large in (weighted) <span>\\(L^{\\infty }\\)</span>, but sufficiently small in the sense of relative entropy. Specifically, we extend the results for large amplitude solutions of the Boltzmann equation (with or without external potential) [10,11,12, 23] to scenarios involving significant external potentials [19, 28] under diffuse reflection boundary conditions.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Large Amplitude Solution of the Boltzmann equation with Large External Potential and Boundary Effects\",\"authors\":\"Jong-in Kim,&nbsp;Donghyun Lee\",\"doi\":\"10.1007/s10955-025-03459-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Boltzmann equation is a fundamental equation in kinetic theory that describes the motion of rarefied gases. In this study, we examine the Boltzmann equation within a <span>\\\\(C^{1}\\\\)</span> bounded domain, subject to a large external potential <span>\\\\(\\\\Phi (x)\\\\)</span> and diffuse reflection boundary conditions. Initially, we prove the asymptotic stability of small perturbations near the local Maxwellian <span>\\\\(\\\\mu _{E}(x,v)\\\\)</span>. Subsequently, we demonstrate the asymptotic stability of large amplitude solutions with initial data that is arbitrarily large in (weighted) <span>\\\\(L^{\\\\infty }\\\\)</span>, but sufficiently small in the sense of relative entropy. Specifically, we extend the results for large amplitude solutions of the Boltzmann equation (with or without external potential) [10,11,12, 23] to scenarios involving significant external potentials [19, 28] under diffuse reflection boundary conditions.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 6\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03459-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03459-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

玻尔兹曼方程是动力学理论中描述稀薄气体运动的一个基本方程。在本研究中,我们研究了\(C^{1}\)有界域内的玻尔兹曼方程,受到大的外部电位\(\Phi (x)\)和漫反射边界条件的约束。首先,我们证明了小扰动在局部麦克斯韦方程\(\mu _{E}(x,v)\)附近的渐近稳定性。随后,我们证明了大振幅解的渐近稳定性,初始数据在(加权)\(L^{\infty }\)中任意大,但在相对熵的意义上足够小。具体来说,我们将玻尔兹曼方程(有或没有外电位)的大振幅解的结果[10,11,12,23]推广到漫反射边界条件下具有显著外电位的场景[19,28]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Large Amplitude Solution of the Boltzmann equation with Large External Potential and Boundary Effects

The Boltzmann equation is a fundamental equation in kinetic theory that describes the motion of rarefied gases. In this study, we examine the Boltzmann equation within a \(C^{1}\) bounded domain, subject to a large external potential \(\Phi (x)\) and diffuse reflection boundary conditions. Initially, we prove the asymptotic stability of small perturbations near the local Maxwellian \(\mu _{E}(x,v)\). Subsequently, we demonstrate the asymptotic stability of large amplitude solutions with initial data that is arbitrarily large in (weighted) \(L^{\infty }\), but sufficiently small in the sense of relative entropy. Specifically, we extend the results for large amplitude solutions of the Boltzmann equation (with or without external potential) [10,11,12, 23] to scenarios involving significant external potentials [19, 28] under diffuse reflection boundary conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信