常温和高温下不同空间结构Al-Si-Cu-Ni-Mg合金力学性能的对比评价

IF 4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kaiqi Hu, Tong Gao, Guiliang Liu, Qianqian Sun, Mengxia Han, Qingfei Xu, Xiangfa Liu
{"title":"常温和高温下不同空间结构Al-Si-Cu-Ni-Mg合金力学性能的对比评价","authors":"Kaiqi Hu,&nbsp;Tong Gao,&nbsp;Guiliang Liu,&nbsp;Qianqian Sun,&nbsp;Mengxia Han,&nbsp;Qingfei Xu,&nbsp;Xiangfa Liu","doi":"10.1007/s12540-024-01860-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a comprehensive analysis of the mechanical properties of Al–Si–Cu–Ni–Mg piston alloys in both as-cast (AC) and as-extruded (AE) states, examining the microstructural configurations and their influence on mechanical properties ranging from ambient temperature to 350 °C. The AC alloy demonstrates a semi-continuous network distribution of secondary phases, in contrast to the dispersed particle distribution in AE alloy. A significant decrease in tensile and yield strengths with the temperature increasing is observed for both alloys. Notably, the AE alloy outperforms the AC alloy in tensile properties at ambient temperature, with ultimate tensile strength and elongation reaching 365 MPa and 12%, respectively. However, the AC alloy exhibits superior tensile strength at 250–350 °C. The study introduces the concept of failure rate (FR) to elucidate the temperature-dependent tensile strength reduction, revealing that the AC alloy maintains a lower FR compared to the AE alloy within the 250–350 °C range. The comprehensive analysis of strengthening mechanisms suggests that Orowan and thermal mismatch dislocation strengthening dominate at ambient temperature, while load transfer and network strengthening become predominant at elevated temperatures. These findings might provide critical insights into alloy performance optimization for high-temperature applications.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"31 7","pages":"1932 - 1948"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Evaluation of the Mechanical Properties of Al–Si–Cu–Ni–Mg Alloys with Distinct Spatial Architectures at Ambient and High Temperatures\",\"authors\":\"Kaiqi Hu,&nbsp;Tong Gao,&nbsp;Guiliang Liu,&nbsp;Qianqian Sun,&nbsp;Mengxia Han,&nbsp;Qingfei Xu,&nbsp;Xiangfa Liu\",\"doi\":\"10.1007/s12540-024-01860-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a comprehensive analysis of the mechanical properties of Al–Si–Cu–Ni–Mg piston alloys in both as-cast (AC) and as-extruded (AE) states, examining the microstructural configurations and their influence on mechanical properties ranging from ambient temperature to 350 °C. The AC alloy demonstrates a semi-continuous network distribution of secondary phases, in contrast to the dispersed particle distribution in AE alloy. A significant decrease in tensile and yield strengths with the temperature increasing is observed for both alloys. Notably, the AE alloy outperforms the AC alloy in tensile properties at ambient temperature, with ultimate tensile strength and elongation reaching 365 MPa and 12%, respectively. However, the AC alloy exhibits superior tensile strength at 250–350 °C. The study introduces the concept of failure rate (FR) to elucidate the temperature-dependent tensile strength reduction, revealing that the AC alloy maintains a lower FR compared to the AE alloy within the 250–350 °C range. The comprehensive analysis of strengthening mechanisms suggests that Orowan and thermal mismatch dislocation strengthening dominate at ambient temperature, while load transfer and network strengthening become predominant at elevated temperatures. These findings might provide critical insights into alloy performance optimization for high-temperature applications.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":\"31 7\",\"pages\":\"1932 - 1948\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12540-024-01860-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01860-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究全面分析了Al-Si-Cu-Ni-Mg活塞合金在铸态(AC)和挤压态(AE)两种状态下的力学性能,研究了在环境温度到350°C范围内的微观组织形态及其对力学性能的影响。交流合金的二次相呈半连续网状分布,而声发射合金的二次相呈分散颗粒分布。两种合金的抗拉强度和屈服强度均随温度升高而显著降低。值得一提的是,AE合金的室温拉伸性能优于AC合金,极限抗拉强度和延伸率分别达到365 MPa和12%。然而,AC合金在250-350°C时表现出优异的抗拉强度。该研究引入了失效率(FR)的概念来解释温度相关的抗拉强度降低,结果表明,在250-350℃范围内,交流合金的失效率比声发射合金低。综合分析表明,常温下以Orowan和热错配位错强化为主,高温下以载荷传递和网络强化为主。这些发现可能为高温应用的合金性能优化提供重要见解。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Evaluation of the Mechanical Properties of Al–Si–Cu–Ni–Mg Alloys with Distinct Spatial Architectures at Ambient and High Temperatures

This study presents a comprehensive analysis of the mechanical properties of Al–Si–Cu–Ni–Mg piston alloys in both as-cast (AC) and as-extruded (AE) states, examining the microstructural configurations and their influence on mechanical properties ranging from ambient temperature to 350 °C. The AC alloy demonstrates a semi-continuous network distribution of secondary phases, in contrast to the dispersed particle distribution in AE alloy. A significant decrease in tensile and yield strengths with the temperature increasing is observed for both alloys. Notably, the AE alloy outperforms the AC alloy in tensile properties at ambient temperature, with ultimate tensile strength and elongation reaching 365 MPa and 12%, respectively. However, the AC alloy exhibits superior tensile strength at 250–350 °C. The study introduces the concept of failure rate (FR) to elucidate the temperature-dependent tensile strength reduction, revealing that the AC alloy maintains a lower FR compared to the AE alloy within the 250–350 °C range. The comprehensive analysis of strengthening mechanisms suggests that Orowan and thermal mismatch dislocation strengthening dominate at ambient temperature, while load transfer and network strengthening become predominant at elevated temperatures. These findings might provide critical insights into alloy performance optimization for high-temperature applications.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信