{"title":"无枝晶锌阳极阳离子掺杂二氧化铈人工界面层的表面电子重构","authors":"Linlong Lu, Zheng Wang, Jingwen Cai, Zhengyu Bao, Yukai Lan, Yinze Zuo, Yidong Jiang, Wei Yan, Jiujun Zhang","doi":"10.1007/s11708-025-1002-8","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous zinc metal batteries (ZMBs) are regarded as strong contenders in secondary battery systems due to their high safety and abundant resources. However, the cycling performance of the Zn anode and the overall performance of the cells have often been hindered by the formation of Zn dendrites and the occurrence of parasitic side reactions. In this paper, a surface electron reconfiguration strategy is proposed to optimize the adsorption energy and migration energy of Zn<sup>2+</sup> for a better Zn<sup>2+</sup> deposition/stripping process by adjusting the electronic structure of ceric dioxide (CeO<sub>2</sub>) artificial interface layer with copper atoms (Cu) doped. Both experimental results and theoretical calculations demonstrate that the Cu<sub>2</sub>Ce<sub>7</sub>O<sub><i>x</i></sub> interface facilitates rapid transport of Zn<sup>2+</sup> due to the optimized electronic structure and appropriate electron density, leading to a highly reversible and stable Zn anode. Consequently, the Cu<sub>2</sub>Ce<sub>7</sub>O<sub><i>x</i></sub>@Zn symmetric cell exhibits an overpotential of only 24 mV after stably cycling for over 1600 h at a current density of 1 mA/cm<sup>2</sup> and a capacity of 1 mAh/cm<sup>2</sup>. Additionally, the cycle life of Cu/Zn asymmetric cells exceeds 2500 h, with an average Coulombic efficiency of 99.9%. This paper provides a novel approach to the artificial interface layer strategy, offering new insights for improving the performance of ZMBs.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 3","pages":"382 - 394"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface electron reconfiguration of ceric dioxide artificial interface layer by cationic doping for dendrite-free zinc anode\",\"authors\":\"Linlong Lu, Zheng Wang, Jingwen Cai, Zhengyu Bao, Yukai Lan, Yinze Zuo, Yidong Jiang, Wei Yan, Jiujun Zhang\",\"doi\":\"10.1007/s11708-025-1002-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aqueous zinc metal batteries (ZMBs) are regarded as strong contenders in secondary battery systems due to their high safety and abundant resources. However, the cycling performance of the Zn anode and the overall performance of the cells have often been hindered by the formation of Zn dendrites and the occurrence of parasitic side reactions. In this paper, a surface electron reconfiguration strategy is proposed to optimize the adsorption energy and migration energy of Zn<sup>2+</sup> for a better Zn<sup>2+</sup> deposition/stripping process by adjusting the electronic structure of ceric dioxide (CeO<sub>2</sub>) artificial interface layer with copper atoms (Cu) doped. Both experimental results and theoretical calculations demonstrate that the Cu<sub>2</sub>Ce<sub>7</sub>O<sub><i>x</i></sub> interface facilitates rapid transport of Zn<sup>2+</sup> due to the optimized electronic structure and appropriate electron density, leading to a highly reversible and stable Zn anode. Consequently, the Cu<sub>2</sub>Ce<sub>7</sub>O<sub><i>x</i></sub>@Zn symmetric cell exhibits an overpotential of only 24 mV after stably cycling for over 1600 h at a current density of 1 mA/cm<sup>2</sup> and a capacity of 1 mAh/cm<sup>2</sup>. Additionally, the cycle life of Cu/Zn asymmetric cells exceeds 2500 h, with an average Coulombic efficiency of 99.9%. This paper provides a novel approach to the artificial interface layer strategy, offering new insights for improving the performance of ZMBs.</p></div>\",\"PeriodicalId\":570,\"journal\":{\"name\":\"Frontiers in Energy\",\"volume\":\"19 3\",\"pages\":\"382 - 394\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11708-025-1002-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-025-1002-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Surface electron reconfiguration of ceric dioxide artificial interface layer by cationic doping for dendrite-free zinc anode
Aqueous zinc metal batteries (ZMBs) are regarded as strong contenders in secondary battery systems due to their high safety and abundant resources. However, the cycling performance of the Zn anode and the overall performance of the cells have often been hindered by the formation of Zn dendrites and the occurrence of parasitic side reactions. In this paper, a surface electron reconfiguration strategy is proposed to optimize the adsorption energy and migration energy of Zn2+ for a better Zn2+ deposition/stripping process by adjusting the electronic structure of ceric dioxide (CeO2) artificial interface layer with copper atoms (Cu) doped. Both experimental results and theoretical calculations demonstrate that the Cu2Ce7Ox interface facilitates rapid transport of Zn2+ due to the optimized electronic structure and appropriate electron density, leading to a highly reversible and stable Zn anode. Consequently, the Cu2Ce7Ox@Zn symmetric cell exhibits an overpotential of only 24 mV after stably cycling for over 1600 h at a current density of 1 mA/cm2 and a capacity of 1 mAh/cm2. Additionally, the cycle life of Cu/Zn asymmetric cells exceeds 2500 h, with an average Coulombic efficiency of 99.9%. This paper provides a novel approach to the artificial interface layer strategy, offering new insights for improving the performance of ZMBs.
期刊介绍:
Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy.
Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues.
Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research.
High-quality papers are solicited in, but are not limited to the following areas:
-Fundamental energy science
-Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency
-Energy and the environment, including pollution control, energy efficiency and climate change
-Energy economics, strategy and policy
-Emerging energy issue