具有约束的随机波动方程:适定性和Smoluchowski-Kramers扩散近似

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Zdzisław Brzeźniak, Sandra Cerrai
{"title":"具有约束的随机波动方程:适定性和Smoluchowski-Kramers扩散近似","authors":"Zdzisław Brzeźniak,&nbsp;Sandra Cerrai","doi":"10.1007/s00220-025-05397-0","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the well-posedness of a class of stochastic second-order in time damped evolution equations in Hilbert spaces, subject to the constraint that the solution lies within the unitary sphere. Then, we focus on a specific example, the stochastic damped wave equation in a bounded domain of a <i>d</i>-dimensional Euclidean space, endowed with the Dirichlet boundary condition, with the added constraint that the <span>\\(L^2\\)</span>-norm of the solution is equal to one. We introduce a small mass <span>\\(\\mu &gt;0\\)</span> in front of the second-order derivative in time and examine the validity of a Smoluchowski–Kramers diffusion approximation. We demonstrate that, in the small mass limit, the solution converges to the solution of a stochastic parabolic equation subject to the same constraint. We further show that an extra noise-induced drift emerges, which in fact does not account for the Stratonovich-to-Itô correction term.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05397-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Stochastic Wave Equations with Constraints: Well-Posedness and Smoluchowski–Kramers Diffusion Approximation\",\"authors\":\"Zdzisław Brzeźniak,&nbsp;Sandra Cerrai\",\"doi\":\"10.1007/s00220-025-05397-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the well-posedness of a class of stochastic second-order in time damped evolution equations in Hilbert spaces, subject to the constraint that the solution lies within the unitary sphere. Then, we focus on a specific example, the stochastic damped wave equation in a bounded domain of a <i>d</i>-dimensional Euclidean space, endowed with the Dirichlet boundary condition, with the added constraint that the <span>\\\\(L^2\\\\)</span>-norm of the solution is equal to one. We introduce a small mass <span>\\\\(\\\\mu &gt;0\\\\)</span> in front of the second-order derivative in time and examine the validity of a Smoluchowski–Kramers diffusion approximation. We demonstrate that, in the small mass limit, the solution converges to the solution of a stochastic parabolic equation subject to the same constraint. We further show that an extra noise-induced drift emerges, which in fact does not account for the Stratonovich-to-Itô correction term.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 9\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-025-05397-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05397-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05397-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了Hilbert空间中一类随机二阶时间阻尼演化方程的适定性,其解在酉球内。然后,我们重点讨论了一个具体的例子,即d维欧几里得空间有界域中的随机阻尼波动方程,该方程具有Dirichlet边界条件,并附加了解的\(L^2\) -范数等于1的约束。我们在二阶导数前引入一个小质量\(\mu >0\),并检验了smouchowski - kramers扩散近似的有效性。我们证明,在小质量极限下,解收敛于受相同约束的随机抛物方程的解。我们进一步表明,出现了额外的噪声诱导漂移,这实际上并不能解释Stratonovich-to-Itô校正项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Wave Equations with Constraints: Well-Posedness and Smoluchowski–Kramers Diffusion Approximation

We investigate the well-posedness of a class of stochastic second-order in time damped evolution equations in Hilbert spaces, subject to the constraint that the solution lies within the unitary sphere. Then, we focus on a specific example, the stochastic damped wave equation in a bounded domain of a d-dimensional Euclidean space, endowed with the Dirichlet boundary condition, with the added constraint that the \(L^2\)-norm of the solution is equal to one. We introduce a small mass \(\mu >0\) in front of the second-order derivative in time and examine the validity of a Smoluchowski–Kramers diffusion approximation. We demonstrate that, in the small mass limit, the solution converges to the solution of a stochastic parabolic equation subject to the same constraint. We further show that an extra noise-induced drift emerges, which in fact does not account for the Stratonovich-to-Itô correction term.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信