环上的心和余代数的范畴是局部可数的

IF 0.6 3区 数学 Q3 MATHEMATICS
L. Positselski
{"title":"环上的心和余代数的范畴是局部可数的","authors":"L. Positselski","doi":"10.1007/s10474-025-01538-y","DOIUrl":null,"url":null,"abstract":"<div><p>For any commutative ring <i>R</i>, we show that the categories of\n<i>R</i>-coalgebras and cocommutative <i>R</i>-coalgebras are locally\n<span>\\(\\aleph_1\\)</span>-presentable, while the categories of <i>R</i>-flat\n<i>R</i>-coalgebras are <span>\\(\\aleph_1\\)</span>-accessible.\n Similarly, for any associative ring <i>R</i>, the category of <i>R</i>-corings\nis locally <span>\\(\\aleph_1\\)</span>-presentable, while the category of\n<i>R</i>-<i>R</i>-bimodule flat <i>R</i>-corings is <span>\\(\\aleph_1\\)</span>-accessible.\n The cardinality of the ring <i>R</i> can be arbitrarily large.\n We also discuss <i>R</i>-corings with surjective counit and flat kernel.\n The proofs are straightforward applications of an abstract\ncategory-theoretic principle going back to Ulmer.\n For right or two-sided <i>R</i>-module flat <i>R</i>-corings, our cardinality\nestimate for the accessibility rank is not as good.\n A generalization to comonoid objects in accessible monoidal categories\nis also considered.\n</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"176 1","pages":"58 - 85"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10474-025-01538-y.pdf","citationCount":"0","resultStr":"{\"title\":\"The categories of corings and coalgebras over a ring are locally countably presentable\",\"authors\":\"L. Positselski\",\"doi\":\"10.1007/s10474-025-01538-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For any commutative ring <i>R</i>, we show that the categories of\\n<i>R</i>-coalgebras and cocommutative <i>R</i>-coalgebras are locally\\n<span>\\\\(\\\\aleph_1\\\\)</span>-presentable, while the categories of <i>R</i>-flat\\n<i>R</i>-coalgebras are <span>\\\\(\\\\aleph_1\\\\)</span>-accessible.\\n Similarly, for any associative ring <i>R</i>, the category of <i>R</i>-corings\\nis locally <span>\\\\(\\\\aleph_1\\\\)</span>-presentable, while the category of\\n<i>R</i>-<i>R</i>-bimodule flat <i>R</i>-corings is <span>\\\\(\\\\aleph_1\\\\)</span>-accessible.\\n The cardinality of the ring <i>R</i> can be arbitrarily large.\\n We also discuss <i>R</i>-corings with surjective counit and flat kernel.\\n The proofs are straightforward applications of an abstract\\ncategory-theoretic principle going back to Ulmer.\\n For right or two-sided <i>R</i>-module flat <i>R</i>-corings, our cardinality\\nestimate for the accessibility rank is not as good.\\n A generalization to comonoid objects in accessible monoidal categories\\nis also considered.\\n</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"176 1\",\"pages\":\"58 - 85\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10474-025-01538-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-025-01538-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01538-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于任意交换环R,我们证明了R-协代数和协交换R-协代数的范畴是局部\(\aleph_1\) -可表示的,而R- flatr -协代数的范畴是\(\aleph_1\) -可表示的。类似地,对于任何结合环R, R-芯的范畴在局部是\(\aleph_1\) -可表示的,而R-R-双模平R-芯的范畴是\(\aleph_1\) -可表示的。环R的基数可以任意大。我们还讨论了具有满射计数和平等核的r -心。这些证明是回溯到Ulmer的抽象范畴论原理的直接应用。对于右侧或两侧r模平面r芯,我们对可访问性等级的基数估计不那么好。本文还考虑了可及一元范畴中共面对象的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The categories of corings and coalgebras over a ring are locally countably presentable

For any commutative ring R, we show that the categories of R-coalgebras and cocommutative R-coalgebras are locally \(\aleph_1\)-presentable, while the categories of R-flat R-coalgebras are \(\aleph_1\)-accessible. Similarly, for any associative ring R, the category of R-corings is locally \(\aleph_1\)-presentable, while the category of R-R-bimodule flat R-corings is \(\aleph_1\)-accessible. The cardinality of the ring R can be arbitrarily large. We also discuss R-corings with surjective counit and flat kernel. The proofs are straightforward applications of an abstract category-theoretic principle going back to Ulmer. For right or two-sided R-module flat R-corings, our cardinality estimate for the accessibility rank is not as good. A generalization to comonoid objects in accessible monoidal categories is also considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信