\(\mathbf{C}^*\) -代数上线性泛函与数值半径的不等式

IF 0.6 3区 数学 Q3 MATHEMATICS
P. Bhunia
{"title":"\\(\\mathbf{C}^*\\) -代数上线性泛函与数值半径的不等式","authors":"P. Bhunia","doi":"10.1007/s10474-025-01534-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathcal{A}\\)</span> be a unital <span>\\(\\mathbf{C}^*\\)</span>-algebra with unit <i>e</i>.\nWe develop several inequalities for a positive linear functional <i>f</i> on <span>\\(\\mathcal{A}\\)</span> and obtain several bounds for the numerical radius <i>v</i>(<i>a</i>) of an element <span>\\(a\\in \\mathcal{A}\\)</span>.\nAmong other inequalities, we show that if <span>\\(a_k, b_k, x_k\\in \\mathcal{A}\\)</span>, <span>\\(r\\in \\mathbb{N}\\)</span> and <span>\\(f(e)=1\\)</span>, then\n</p><div><div><span>$$\\begin{aligned}\n\\bigg| f \\bigg( \\sum_{k=1}^n a_k^*x_kb_k\\bigg)\\bigg|^{r} &amp; \\leq \\frac{n^{r-1}}{\\sqrt{2}} \\bigg| f\\bigg( \\sum_{k=1}^n \\big( (b_k^*|x_k| b_k)^{r}+ i (a_k^*|x_k^*|a_k)^{r} \\big) \\bigg) \\bigg| \\quad (i=\\sqrt{-1}), \\\\ \n\\bigg| f\\bigg( \\sum_{k=1}^n a_k\\bigg)\\bigg|^{2r} &amp; \\leq \\frac{n^{2r-1}}{2} f \\bigg(\\sum_{k=1}^n \\textrm{Re} ( |a_k|^r|a_k^*|^r) + \\frac{1}{2} \\sum_{k=1}^n (|a_k|^{2r}+ |a_k^*|^{2r} )\\bigg).\\end{aligned}$$</span></div></div><p>\nWe find several equivalent conditions for <span>\\(v(a)=\\frac{\\|a\\|}{2}\\)</span> and <span>\\(v^2(a)={\\frac{1}{4}\\|a^*a+aa^*\\|}\\)</span>.\nWe prove that <span>\\(v^2(a)={\\frac{1}{4}\\|a^*a+aa^*\\|}\\)</span> (resp., <span>\\(v(a)=\\frac{\\|a\\|}{2}\\)</span>) if and only if \n</p><div><div><span>$$\\mathbb{S}_{\\frac12{ \\| a^*a+aa^*\\|}^{1/2}} \\subseteq V(a) \\subseteq \\mathbb{D}_{\\frac12 {\\| a^*a+aa^*\\|}^{1/2}}$$</span></div></div><p>\n(resp., <span>\\(\\mathbb{S}_{\\frac12 \\| a\\|} \\subseteq V(a) \\subseteq \\mathbb{D}_{\\frac12 \\| a\\|}\\)</span>),\nwhere <i>V</i>(<i>a</i>) is the numerical range of <i>a</i> and <span>\\(\\mathbb{D}_k\\)</span> (resp., <span>\\(\\mathbb{S}_k\\)</span>) denotes the circular disk (resp., semi-circular disk) with center at the origin and radius <i>k</i>. We also study inequalities for the <span>\\((\\alpha,\\beta)\\)</span>-normal elements in <span>\\(\\mathcal{A}\\)</span>. </p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"176 1","pages":"111 - 138"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inequalities for linear functionals and numerical radii on \\\\(\\\\mathbf{C}^*\\\\)-algebras\",\"authors\":\"P. Bhunia\",\"doi\":\"10.1007/s10474-025-01534-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathcal{A}\\\\)</span> be a unital <span>\\\\(\\\\mathbf{C}^*\\\\)</span>-algebra with unit <i>e</i>.\\nWe develop several inequalities for a positive linear functional <i>f</i> on <span>\\\\(\\\\mathcal{A}\\\\)</span> and obtain several bounds for the numerical radius <i>v</i>(<i>a</i>) of an element <span>\\\\(a\\\\in \\\\mathcal{A}\\\\)</span>.\\nAmong other inequalities, we show that if <span>\\\\(a_k, b_k, x_k\\\\in \\\\mathcal{A}\\\\)</span>, <span>\\\\(r\\\\in \\\\mathbb{N}\\\\)</span> and <span>\\\\(f(e)=1\\\\)</span>, then\\n</p><div><div><span>$$\\\\begin{aligned}\\n\\\\bigg| f \\\\bigg( \\\\sum_{k=1}^n a_k^*x_kb_k\\\\bigg)\\\\bigg|^{r} &amp; \\\\leq \\\\frac{n^{r-1}}{\\\\sqrt{2}} \\\\bigg| f\\\\bigg( \\\\sum_{k=1}^n \\\\big( (b_k^*|x_k| b_k)^{r}+ i (a_k^*|x_k^*|a_k)^{r} \\\\big) \\\\bigg) \\\\bigg| \\\\quad (i=\\\\sqrt{-1}), \\\\\\\\ \\n\\\\bigg| f\\\\bigg( \\\\sum_{k=1}^n a_k\\\\bigg)\\\\bigg|^{2r} &amp; \\\\leq \\\\frac{n^{2r-1}}{2} f \\\\bigg(\\\\sum_{k=1}^n \\\\textrm{Re} ( |a_k|^r|a_k^*|^r) + \\\\frac{1}{2} \\\\sum_{k=1}^n (|a_k|^{2r}+ |a_k^*|^{2r} )\\\\bigg).\\\\end{aligned}$$</span></div></div><p>\\nWe find several equivalent conditions for <span>\\\\(v(a)=\\\\frac{\\\\|a\\\\|}{2}\\\\)</span> and <span>\\\\(v^2(a)={\\\\frac{1}{4}\\\\|a^*a+aa^*\\\\|}\\\\)</span>.\\nWe prove that <span>\\\\(v^2(a)={\\\\frac{1}{4}\\\\|a^*a+aa^*\\\\|}\\\\)</span> (resp., <span>\\\\(v(a)=\\\\frac{\\\\|a\\\\|}{2}\\\\)</span>) if and only if \\n</p><div><div><span>$$\\\\mathbb{S}_{\\\\frac12{ \\\\| a^*a+aa^*\\\\|}^{1/2}} \\\\subseteq V(a) \\\\subseteq \\\\mathbb{D}_{\\\\frac12 {\\\\| a^*a+aa^*\\\\|}^{1/2}}$$</span></div></div><p>\\n(resp., <span>\\\\(\\\\mathbb{S}_{\\\\frac12 \\\\| a\\\\|} \\\\subseteq V(a) \\\\subseteq \\\\mathbb{D}_{\\\\frac12 \\\\| a\\\\|}\\\\)</span>),\\nwhere <i>V</i>(<i>a</i>) is the numerical range of <i>a</i> and <span>\\\\(\\\\mathbb{D}_k\\\\)</span> (resp., <span>\\\\(\\\\mathbb{S}_k\\\\)</span>) denotes the circular disk (resp., semi-circular disk) with center at the origin and radius <i>k</i>. We also study inequalities for the <span>\\\\((\\\\alpha,\\\\beta)\\\\)</span>-normal elements in <span>\\\\(\\\\mathcal{A}\\\\)</span>. </p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"176 1\",\"pages\":\"111 - 138\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-025-01534-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01534-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设\(\mathcal{A}\)是一个单位为e的一元\(\mathbf{C}^*\) -代数,给出了\(\mathcal{A}\)上一个正线性泛函f的若干不等式,并得到了元素\(a\in \mathcal{A}\)的数值半径v(a)的若干界。在其他不等式中,我们证明了如果\(a_k, b_k, x_k\in \mathcal{A}\), \(r\in \mathbb{N}\)和\(f(e)=1\),那么$$\begin{aligned}\bigg| f \bigg( \sum_{k=1}^n a_k^*x_kb_k\bigg)\bigg|^{r} & \leq \frac{n^{r-1}}{\sqrt{2}} \bigg| f\bigg( \sum_{k=1}^n \big( (b_k^*|x_k| b_k)^{r}+ i (a_k^*|x_k^*|a_k)^{r} \big) \bigg) \bigg| \quad (i=\sqrt{-1}), \\ \bigg| f\bigg( \sum_{k=1}^n a_k\bigg)\bigg|^{2r} & \leq \frac{n^{2r-1}}{2} f \bigg(\sum_{k=1}^n \textrm{Re} ( |a_k|^r|a_k^*|^r) + \frac{1}{2} \sum_{k=1}^n (|a_k|^{2r}+ |a_k^*|^{2r} )\bigg).\end{aligned}$$我们找到了\(v(a)=\frac{\|a\|}{2}\)和\(v^2(a)={\frac{1}{4}\|a^*a+aa^*\|}\)的几个等价条件。我们证明了\(v^2(a)={\frac{1}{4}\|a^*a+aa^*\|}\) (p。, \(v(a)=\frac{\|a\|}{2}\))当且仅当$$\mathbb{S}_{\frac12{ \| a^*a+aa^*\|}^{1/2}} \subseteq V(a) \subseteq \mathbb{D}_{\frac12 {\| a^*a+aa^*\|}^{1/2}}$$(参见。, \(\mathbb{S}_{\frac12 \| a\|} \subseteq V(a) \subseteq \mathbb{D}_{\frac12 \| a\|}\)),其中V(a)为a和\(\mathbb{D}_k\)的数值范围。, \(\mathbb{S}_k\))表示圆形圆盘(如:以原点为中心,半径为k的半圆形圆盘)。我们还研究了\(\mathcal{A}\)中\((\alpha,\beta)\) -法元的不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inequalities for linear functionals and numerical radii on \(\mathbf{C}^*\)-algebras

Let \(\mathcal{A}\) be a unital \(\mathbf{C}^*\)-algebra with unit e. We develop several inequalities for a positive linear functional f on \(\mathcal{A}\) and obtain several bounds for the numerical radius v(a) of an element \(a\in \mathcal{A}\). Among other inequalities, we show that if \(a_k, b_k, x_k\in \mathcal{A}\), \(r\in \mathbb{N}\) and \(f(e)=1\), then

$$\begin{aligned} \bigg| f \bigg( \sum_{k=1}^n a_k^*x_kb_k\bigg)\bigg|^{r} & \leq \frac{n^{r-1}}{\sqrt{2}} \bigg| f\bigg( \sum_{k=1}^n \big( (b_k^*|x_k| b_k)^{r}+ i (a_k^*|x_k^*|a_k)^{r} \big) \bigg) \bigg| \quad (i=\sqrt{-1}), \\ \bigg| f\bigg( \sum_{k=1}^n a_k\bigg)\bigg|^{2r} & \leq \frac{n^{2r-1}}{2} f \bigg(\sum_{k=1}^n \textrm{Re} ( |a_k|^r|a_k^*|^r) + \frac{1}{2} \sum_{k=1}^n (|a_k|^{2r}+ |a_k^*|^{2r} )\bigg).\end{aligned}$$

We find several equivalent conditions for \(v(a)=\frac{\|a\|}{2}\) and \(v^2(a)={\frac{1}{4}\|a^*a+aa^*\|}\). We prove that \(v^2(a)={\frac{1}{4}\|a^*a+aa^*\|}\) (resp., \(v(a)=\frac{\|a\|}{2}\)) if and only if

$$\mathbb{S}_{\frac12{ \| a^*a+aa^*\|}^{1/2}} \subseteq V(a) \subseteq \mathbb{D}_{\frac12 {\| a^*a+aa^*\|}^{1/2}}$$

(resp., \(\mathbb{S}_{\frac12 \| a\|} \subseteq V(a) \subseteq \mathbb{D}_{\frac12 \| a\|}\)), where V(a) is the numerical range of a and \(\mathbb{D}_k\) (resp., \(\mathbb{S}_k\)) denotes the circular disk (resp., semi-circular disk) with center at the origin and radius k. We also study inequalities for the \((\alpha,\beta)\)-normal elements in \(\mathcal{A}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信