{"title":"\\(\\mathbf{C}^*\\) -代数上线性泛函与数值半径的不等式","authors":"P. Bhunia","doi":"10.1007/s10474-025-01534-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathcal{A}\\)</span> be a unital <span>\\(\\mathbf{C}^*\\)</span>-algebra with unit <i>e</i>.\nWe develop several inequalities for a positive linear functional <i>f</i> on <span>\\(\\mathcal{A}\\)</span> and obtain several bounds for the numerical radius <i>v</i>(<i>a</i>) of an element <span>\\(a\\in \\mathcal{A}\\)</span>.\nAmong other inequalities, we show that if <span>\\(a_k, b_k, x_k\\in \\mathcal{A}\\)</span>, <span>\\(r\\in \\mathbb{N}\\)</span> and <span>\\(f(e)=1\\)</span>, then\n</p><div><div><span>$$\\begin{aligned}\n\\bigg| f \\bigg( \\sum_{k=1}^n a_k^*x_kb_k\\bigg)\\bigg|^{r} & \\leq \\frac{n^{r-1}}{\\sqrt{2}} \\bigg| f\\bigg( \\sum_{k=1}^n \\big( (b_k^*|x_k| b_k)^{r}+ i (a_k^*|x_k^*|a_k)^{r} \\big) \\bigg) \\bigg| \\quad (i=\\sqrt{-1}), \\\\ \n\\bigg| f\\bigg( \\sum_{k=1}^n a_k\\bigg)\\bigg|^{2r} & \\leq \\frac{n^{2r-1}}{2} f \\bigg(\\sum_{k=1}^n \\textrm{Re} ( |a_k|^r|a_k^*|^r) + \\frac{1}{2} \\sum_{k=1}^n (|a_k|^{2r}+ |a_k^*|^{2r} )\\bigg).\\end{aligned}$$</span></div></div><p>\nWe find several equivalent conditions for <span>\\(v(a)=\\frac{\\|a\\|}{2}\\)</span> and <span>\\(v^2(a)={\\frac{1}{4}\\|a^*a+aa^*\\|}\\)</span>.\nWe prove that <span>\\(v^2(a)={\\frac{1}{4}\\|a^*a+aa^*\\|}\\)</span> (resp., <span>\\(v(a)=\\frac{\\|a\\|}{2}\\)</span>) if and only if \n</p><div><div><span>$$\\mathbb{S}_{\\frac12{ \\| a^*a+aa^*\\|}^{1/2}} \\subseteq V(a) \\subseteq \\mathbb{D}_{\\frac12 {\\| a^*a+aa^*\\|}^{1/2}}$$</span></div></div><p>\n(resp., <span>\\(\\mathbb{S}_{\\frac12 \\| a\\|} \\subseteq V(a) \\subseteq \\mathbb{D}_{\\frac12 \\| a\\|}\\)</span>),\nwhere <i>V</i>(<i>a</i>) is the numerical range of <i>a</i> and <span>\\(\\mathbb{D}_k\\)</span> (resp., <span>\\(\\mathbb{S}_k\\)</span>) denotes the circular disk (resp., semi-circular disk) with center at the origin and radius <i>k</i>. We also study inequalities for the <span>\\((\\alpha,\\beta)\\)</span>-normal elements in <span>\\(\\mathcal{A}\\)</span>. </p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"176 1","pages":"111 - 138"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inequalities for linear functionals and numerical radii on \\\\(\\\\mathbf{C}^*\\\\)-algebras\",\"authors\":\"P. Bhunia\",\"doi\":\"10.1007/s10474-025-01534-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathcal{A}\\\\)</span> be a unital <span>\\\\(\\\\mathbf{C}^*\\\\)</span>-algebra with unit <i>e</i>.\\nWe develop several inequalities for a positive linear functional <i>f</i> on <span>\\\\(\\\\mathcal{A}\\\\)</span> and obtain several bounds for the numerical radius <i>v</i>(<i>a</i>) of an element <span>\\\\(a\\\\in \\\\mathcal{A}\\\\)</span>.\\nAmong other inequalities, we show that if <span>\\\\(a_k, b_k, x_k\\\\in \\\\mathcal{A}\\\\)</span>, <span>\\\\(r\\\\in \\\\mathbb{N}\\\\)</span> and <span>\\\\(f(e)=1\\\\)</span>, then\\n</p><div><div><span>$$\\\\begin{aligned}\\n\\\\bigg| f \\\\bigg( \\\\sum_{k=1}^n a_k^*x_kb_k\\\\bigg)\\\\bigg|^{r} & \\\\leq \\\\frac{n^{r-1}}{\\\\sqrt{2}} \\\\bigg| f\\\\bigg( \\\\sum_{k=1}^n \\\\big( (b_k^*|x_k| b_k)^{r}+ i (a_k^*|x_k^*|a_k)^{r} \\\\big) \\\\bigg) \\\\bigg| \\\\quad (i=\\\\sqrt{-1}), \\\\\\\\ \\n\\\\bigg| f\\\\bigg( \\\\sum_{k=1}^n a_k\\\\bigg)\\\\bigg|^{2r} & \\\\leq \\\\frac{n^{2r-1}}{2} f \\\\bigg(\\\\sum_{k=1}^n \\\\textrm{Re} ( |a_k|^r|a_k^*|^r) + \\\\frac{1}{2} \\\\sum_{k=1}^n (|a_k|^{2r}+ |a_k^*|^{2r} )\\\\bigg).\\\\end{aligned}$$</span></div></div><p>\\nWe find several equivalent conditions for <span>\\\\(v(a)=\\\\frac{\\\\|a\\\\|}{2}\\\\)</span> and <span>\\\\(v^2(a)={\\\\frac{1}{4}\\\\|a^*a+aa^*\\\\|}\\\\)</span>.\\nWe prove that <span>\\\\(v^2(a)={\\\\frac{1}{4}\\\\|a^*a+aa^*\\\\|}\\\\)</span> (resp., <span>\\\\(v(a)=\\\\frac{\\\\|a\\\\|}{2}\\\\)</span>) if and only if \\n</p><div><div><span>$$\\\\mathbb{S}_{\\\\frac12{ \\\\| a^*a+aa^*\\\\|}^{1/2}} \\\\subseteq V(a) \\\\subseteq \\\\mathbb{D}_{\\\\frac12 {\\\\| a^*a+aa^*\\\\|}^{1/2}}$$</span></div></div><p>\\n(resp., <span>\\\\(\\\\mathbb{S}_{\\\\frac12 \\\\| a\\\\|} \\\\subseteq V(a) \\\\subseteq \\\\mathbb{D}_{\\\\frac12 \\\\| a\\\\|}\\\\)</span>),\\nwhere <i>V</i>(<i>a</i>) is the numerical range of <i>a</i> and <span>\\\\(\\\\mathbb{D}_k\\\\)</span> (resp., <span>\\\\(\\\\mathbb{S}_k\\\\)</span>) denotes the circular disk (resp., semi-circular disk) with center at the origin and radius <i>k</i>. We also study inequalities for the <span>\\\\((\\\\alpha,\\\\beta)\\\\)</span>-normal elements in <span>\\\\(\\\\mathcal{A}\\\\)</span>. </p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"176 1\",\"pages\":\"111 - 138\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-025-01534-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01534-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Inequalities for linear functionals and numerical radii on \(\mathbf{C}^*\)-algebras
Let \(\mathcal{A}\) be a unital \(\mathbf{C}^*\)-algebra with unit e.
We develop several inequalities for a positive linear functional f on \(\mathcal{A}\) and obtain several bounds for the numerical radius v(a) of an element \(a\in \mathcal{A}\).
Among other inequalities, we show that if \(a_k, b_k, x_k\in \mathcal{A}\), \(r\in \mathbb{N}\) and \(f(e)=1\), then
We find several equivalent conditions for \(v(a)=\frac{\|a\|}{2}\) and \(v^2(a)={\frac{1}{4}\|a^*a+aa^*\|}\).
We prove that \(v^2(a)={\frac{1}{4}\|a^*a+aa^*\|}\) (resp., \(v(a)=\frac{\|a\|}{2}\)) if and only if
(resp., \(\mathbb{S}_{\frac12 \| a\|} \subseteq V(a) \subseteq \mathbb{D}_{\frac12 \| a\|}\)),
where V(a) is the numerical range of a and \(\mathbb{D}_k\) (resp., \(\mathbb{S}_k\)) denotes the circular disk (resp., semi-circular disk) with center at the origin and radius k. We also study inequalities for the \((\alpha,\beta)\)-normal elements in \(\mathcal{A}\).
期刊介绍:
Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.