Fernando Vieira Lima, Stephen A. Hall, Jonas Engqvist, Erika Tudisco, Robin Woracek, Stefanos Athanasopoulos, Philip Vestin
{"title":"研究非均质岩石中达西定律的明显偏差:来自中子成像的见解","authors":"Fernando Vieira Lima, Stephen A. Hall, Jonas Engqvist, Erika Tudisco, Robin Woracek, Stefanos Athanasopoulos, Philip Vestin","doi":"10.1007/s11242-025-02185-1","DOIUrl":null,"url":null,"abstract":"<div><p>Darcy’s law provides a fundamental framework for understanding fluid flow through porous media. However, deviations from its linear superficial velocity-hydraulic gradient (<i>v</i>-<i>i</i>) relationship have been widely reported, at high and low flow rates. While previous studies have attributed the low flow rate deviations to factors such as fluid properties, boundary effects, and experimental artifacts, the role of material heterogeneity has received less attention. This study employs neutron imaging to investigate how rock heterogeneity influences macroscopically observed flow behavior. Volume-controlled percolation tests were conducted on Idaho Gray sandstone cores under near-single-phase conditions using heavy water (D<sub>2</sub>O) and normal water (H<sub>2</sub>O) across a wide range of flow rates. Bulk measurements (pore pressure at the sample boundaries and the controlled injection flow rate) revealed a decline in hydraulic conductivity at lower injection rates. Through a novel method for interpreting the breakthrough curves (BTC) derived from the neutron imaging data, we are able to quantify the volume of pores active in the flow during each test. The neutron radiography imaging acquired during the flow tests revealed that flow paths were strongly influenced by the rock’s heterogeneous pore structure, with higher flow rates promoting more uniform front propagation. This suggests greater pore space access at higher injection rates and implies the presence of threshold pressure gradients needed to access different parts of the pore network. The BTC analysis from neutron image shows a decrease in the volume of pores active in the flow (effective porosity) with decreasing injection rates, aligning with the observed reduction in hydraulic conductivity. By linking nonlinearity in <i>vi</i>-curves to variations in effective porosity, this study highlights the critical role of heterogeneity in controlling the fluid flow behavior. These findings underscore the importance of understanding the role of spatial variability in porous media when interpreting macroscopic (bulk) permeability measurements, especially when interpreting apparent deviations from Darcy’s law.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"152 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-025-02185-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigating Apparent Deviations from Darcy’s Law in Heterogeneous Rocks: Insights from Neutron Imaging\",\"authors\":\"Fernando Vieira Lima, Stephen A. Hall, Jonas Engqvist, Erika Tudisco, Robin Woracek, Stefanos Athanasopoulos, Philip Vestin\",\"doi\":\"10.1007/s11242-025-02185-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Darcy’s law provides a fundamental framework for understanding fluid flow through porous media. However, deviations from its linear superficial velocity-hydraulic gradient (<i>v</i>-<i>i</i>) relationship have been widely reported, at high and low flow rates. While previous studies have attributed the low flow rate deviations to factors such as fluid properties, boundary effects, and experimental artifacts, the role of material heterogeneity has received less attention. This study employs neutron imaging to investigate how rock heterogeneity influences macroscopically observed flow behavior. Volume-controlled percolation tests were conducted on Idaho Gray sandstone cores under near-single-phase conditions using heavy water (D<sub>2</sub>O) and normal water (H<sub>2</sub>O) across a wide range of flow rates. Bulk measurements (pore pressure at the sample boundaries and the controlled injection flow rate) revealed a decline in hydraulic conductivity at lower injection rates. Through a novel method for interpreting the breakthrough curves (BTC) derived from the neutron imaging data, we are able to quantify the volume of pores active in the flow during each test. The neutron radiography imaging acquired during the flow tests revealed that flow paths were strongly influenced by the rock’s heterogeneous pore structure, with higher flow rates promoting more uniform front propagation. This suggests greater pore space access at higher injection rates and implies the presence of threshold pressure gradients needed to access different parts of the pore network. The BTC analysis from neutron image shows a decrease in the volume of pores active in the flow (effective porosity) with decreasing injection rates, aligning with the observed reduction in hydraulic conductivity. By linking nonlinearity in <i>vi</i>-curves to variations in effective porosity, this study highlights the critical role of heterogeneity in controlling the fluid flow behavior. These findings underscore the importance of understanding the role of spatial variability in porous media when interpreting macroscopic (bulk) permeability measurements, especially when interpreting apparent deviations from Darcy’s law.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":\"152 7\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11242-025-02185-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-025-02185-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-025-02185-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Investigating Apparent Deviations from Darcy’s Law in Heterogeneous Rocks: Insights from Neutron Imaging
Darcy’s law provides a fundamental framework for understanding fluid flow through porous media. However, deviations from its linear superficial velocity-hydraulic gradient (v-i) relationship have been widely reported, at high and low flow rates. While previous studies have attributed the low flow rate deviations to factors such as fluid properties, boundary effects, and experimental artifacts, the role of material heterogeneity has received less attention. This study employs neutron imaging to investigate how rock heterogeneity influences macroscopically observed flow behavior. Volume-controlled percolation tests were conducted on Idaho Gray sandstone cores under near-single-phase conditions using heavy water (D2O) and normal water (H2O) across a wide range of flow rates. Bulk measurements (pore pressure at the sample boundaries and the controlled injection flow rate) revealed a decline in hydraulic conductivity at lower injection rates. Through a novel method for interpreting the breakthrough curves (BTC) derived from the neutron imaging data, we are able to quantify the volume of pores active in the flow during each test. The neutron radiography imaging acquired during the flow tests revealed that flow paths were strongly influenced by the rock’s heterogeneous pore structure, with higher flow rates promoting more uniform front propagation. This suggests greater pore space access at higher injection rates and implies the presence of threshold pressure gradients needed to access different parts of the pore network. The BTC analysis from neutron image shows a decrease in the volume of pores active in the flow (effective porosity) with decreasing injection rates, aligning with the observed reduction in hydraulic conductivity. By linking nonlinearity in vi-curves to variations in effective porosity, this study highlights the critical role of heterogeneity in controlling the fluid flow behavior. These findings underscore the importance of understanding the role of spatial variability in porous media when interpreting macroscopic (bulk) permeability measurements, especially when interpreting apparent deviations from Darcy’s law.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).