量子微分方程求解器:限制和快速推进

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Dong An, Jin-Peng Liu, Daochen Wang, Qi Zhao
{"title":"量子微分方程求解器:限制和快速推进","authors":"Dong An,&nbsp;Jin-Peng Liu,&nbsp;Daochen Wang,&nbsp;Qi Zhao","doi":"10.1007/s00220-025-05358-7","DOIUrl":null,"url":null,"abstract":"<div><p>We study the limitations and fast-forwarding of quantum algorithms for linear ordinary differential equation (ODE) systems with a particular focus on non-quantum dynamics, where the coefficient matrix in the ODE is not anti-Hermitian or the ODE is inhomogeneous. On the one hand, for generic linear ODEs, by proving worst-case lower bounds, we show that quantum algorithms suffer from computational overheads due to two types of “non-quantumness”: real part gap and non-normality of the coefficient matrix. We then show that homogeneous ODEs in the absence of both types of “non-quantumness” are equivalent to quantum dynamics, and reach the conclusion that quantum algorithms for quantum dynamics work best. To obtain these lower bounds, we propose a general framework for proving lower bounds on quantum algorithms that are <i>amplifiers</i>, meaning that they amplify the difference between a pair of input quantum states. On the other hand, we show how to fast-forward quantum algorithms for solving special classes of ODEs which leads to improved efficiency. More specifically, we obtain exponential improvements in both <i>T</i> and the spectral norm of the coefficient matrix for inhomogeneous ODEs with efficiently implementable eigensystems, including various spatially discretized linear evolutionary partial differential equations. We give fast-forwarding algorithms that are conceptually different from existing ones in the sense that they neither require time discretization nor solving high-dimensional linear systems.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Differential Equation Solvers: Limitations and Fast-Forwarding\",\"authors\":\"Dong An,&nbsp;Jin-Peng Liu,&nbsp;Daochen Wang,&nbsp;Qi Zhao\",\"doi\":\"10.1007/s00220-025-05358-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the limitations and fast-forwarding of quantum algorithms for linear ordinary differential equation (ODE) systems with a particular focus on non-quantum dynamics, where the coefficient matrix in the ODE is not anti-Hermitian or the ODE is inhomogeneous. On the one hand, for generic linear ODEs, by proving worst-case lower bounds, we show that quantum algorithms suffer from computational overheads due to two types of “non-quantumness”: real part gap and non-normality of the coefficient matrix. We then show that homogeneous ODEs in the absence of both types of “non-quantumness” are equivalent to quantum dynamics, and reach the conclusion that quantum algorithms for quantum dynamics work best. To obtain these lower bounds, we propose a general framework for proving lower bounds on quantum algorithms that are <i>amplifiers</i>, meaning that they amplify the difference between a pair of input quantum states. On the other hand, we show how to fast-forward quantum algorithms for solving special classes of ODEs which leads to improved efficiency. More specifically, we obtain exponential improvements in both <i>T</i> and the spectral norm of the coefficient matrix for inhomogeneous ODEs with efficiently implementable eigensystems, including various spatially discretized linear evolutionary partial differential equations. We give fast-forwarding algorithms that are conceptually different from existing ones in the sense that they neither require time discretization nor solving high-dimensional linear systems.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 8\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05358-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05358-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了线性常微分方程(ODE)系统的量子算法的局限性和快速推进,特别关注非量子动力学,其中ODE中的系数矩阵不是反厄米矩阵或ODE是非齐次的。一方面,对于一般线性ode,通过证明最坏情况下界,我们表明量子算法由于两种类型的“非量子性”而遭受计算开销:实部间隙和系数矩阵的非正态性。然后,我们证明了在没有这两种“非量子性”的情况下,齐次ode等效于量子动力学,并得出量子动力学的量子算法效果最好的结论。为了获得这些下界,我们提出了一个通用框架来证明作为放大器的量子算法的下界,这意味着它们放大一对输入量子态之间的差异。另一方面,我们展示了如何快速推进量子算法来解决特殊类型的ode,从而提高效率。更具体地说,我们获得了具有有效可实现特征系统的非齐次ode的T和系数矩阵的谱范数的指数改进,包括各种空间离散线性进化偏微分方程。我们给出的快速转发算法在概念上与现有算法不同,因为它们既不需要时间离散化,也不需要求解高维线性系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantum Differential Equation Solvers: Limitations and Fast-Forwarding

Quantum Differential Equation Solvers: Limitations and Fast-Forwarding

We study the limitations and fast-forwarding of quantum algorithms for linear ordinary differential equation (ODE) systems with a particular focus on non-quantum dynamics, where the coefficient matrix in the ODE is not anti-Hermitian or the ODE is inhomogeneous. On the one hand, for generic linear ODEs, by proving worst-case lower bounds, we show that quantum algorithms suffer from computational overheads due to two types of “non-quantumness”: real part gap and non-normality of the coefficient matrix. We then show that homogeneous ODEs in the absence of both types of “non-quantumness” are equivalent to quantum dynamics, and reach the conclusion that quantum algorithms for quantum dynamics work best. To obtain these lower bounds, we propose a general framework for proving lower bounds on quantum algorithms that are amplifiers, meaning that they amplify the difference between a pair of input quantum states. On the other hand, we show how to fast-forward quantum algorithms for solving special classes of ODEs which leads to improved efficiency. More specifically, we obtain exponential improvements in both T and the spectral norm of the coefficient matrix for inhomogeneous ODEs with efficiently implementable eigensystems, including various spatially discretized linear evolutionary partial differential equations. We give fast-forwarding algorithms that are conceptually different from existing ones in the sense that they neither require time discretization nor solving high-dimensional linear systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信