{"title":"量子微分方程求解器:限制和快速推进","authors":"Dong An, Jin-Peng Liu, Daochen Wang, Qi Zhao","doi":"10.1007/s00220-025-05358-7","DOIUrl":null,"url":null,"abstract":"<div><p>We study the limitations and fast-forwarding of quantum algorithms for linear ordinary differential equation (ODE) systems with a particular focus on non-quantum dynamics, where the coefficient matrix in the ODE is not anti-Hermitian or the ODE is inhomogeneous. On the one hand, for generic linear ODEs, by proving worst-case lower bounds, we show that quantum algorithms suffer from computational overheads due to two types of “non-quantumness”: real part gap and non-normality of the coefficient matrix. We then show that homogeneous ODEs in the absence of both types of “non-quantumness” are equivalent to quantum dynamics, and reach the conclusion that quantum algorithms for quantum dynamics work best. To obtain these lower bounds, we propose a general framework for proving lower bounds on quantum algorithms that are <i>amplifiers</i>, meaning that they amplify the difference between a pair of input quantum states. On the other hand, we show how to fast-forward quantum algorithms for solving special classes of ODEs which leads to improved efficiency. More specifically, we obtain exponential improvements in both <i>T</i> and the spectral norm of the coefficient matrix for inhomogeneous ODEs with efficiently implementable eigensystems, including various spatially discretized linear evolutionary partial differential equations. We give fast-forwarding algorithms that are conceptually different from existing ones in the sense that they neither require time discretization nor solving high-dimensional linear systems.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Differential Equation Solvers: Limitations and Fast-Forwarding\",\"authors\":\"Dong An, Jin-Peng Liu, Daochen Wang, Qi Zhao\",\"doi\":\"10.1007/s00220-025-05358-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the limitations and fast-forwarding of quantum algorithms for linear ordinary differential equation (ODE) systems with a particular focus on non-quantum dynamics, where the coefficient matrix in the ODE is not anti-Hermitian or the ODE is inhomogeneous. On the one hand, for generic linear ODEs, by proving worst-case lower bounds, we show that quantum algorithms suffer from computational overheads due to two types of “non-quantumness”: real part gap and non-normality of the coefficient matrix. We then show that homogeneous ODEs in the absence of both types of “non-quantumness” are equivalent to quantum dynamics, and reach the conclusion that quantum algorithms for quantum dynamics work best. To obtain these lower bounds, we propose a general framework for proving lower bounds on quantum algorithms that are <i>amplifiers</i>, meaning that they amplify the difference between a pair of input quantum states. On the other hand, we show how to fast-forward quantum algorithms for solving special classes of ODEs which leads to improved efficiency. More specifically, we obtain exponential improvements in both <i>T</i> and the spectral norm of the coefficient matrix for inhomogeneous ODEs with efficiently implementable eigensystems, including various spatially discretized linear evolutionary partial differential equations. We give fast-forwarding algorithms that are conceptually different from existing ones in the sense that they neither require time discretization nor solving high-dimensional linear systems.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 8\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05358-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05358-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Quantum Differential Equation Solvers: Limitations and Fast-Forwarding
We study the limitations and fast-forwarding of quantum algorithms for linear ordinary differential equation (ODE) systems with a particular focus on non-quantum dynamics, where the coefficient matrix in the ODE is not anti-Hermitian or the ODE is inhomogeneous. On the one hand, for generic linear ODEs, by proving worst-case lower bounds, we show that quantum algorithms suffer from computational overheads due to two types of “non-quantumness”: real part gap and non-normality of the coefficient matrix. We then show that homogeneous ODEs in the absence of both types of “non-quantumness” are equivalent to quantum dynamics, and reach the conclusion that quantum algorithms for quantum dynamics work best. To obtain these lower bounds, we propose a general framework for proving lower bounds on quantum algorithms that are amplifiers, meaning that they amplify the difference between a pair of input quantum states. On the other hand, we show how to fast-forward quantum algorithms for solving special classes of ODEs which leads to improved efficiency. More specifically, we obtain exponential improvements in both T and the spectral norm of the coefficient matrix for inhomogeneous ODEs with efficiently implementable eigensystems, including various spatially discretized linear evolutionary partial differential equations. We give fast-forwarding algorithms that are conceptually different from existing ones in the sense that they neither require time discretization nor solving high-dimensional linear systems.
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.