在mfi型沸石中原子水平约束PtCu纳米团簇实现了前所未有的炔半氢化动力学

IF 11 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chang-Xu Wang, Shuai Wang, Liang-Hao Song, Bin Wang, Guo-Zhu Chen, Dao-Wei Gao, Geng-Xiu Zheng, Yi-Pin Lv
{"title":"在mfi型沸石中原子水平约束PtCu纳米团簇实现了前所未有的炔半氢化动力学","authors":"Chang-Xu Wang,&nbsp;Shuai Wang,&nbsp;Liang-Hao Song,&nbsp;Bin Wang,&nbsp;Guo-Zhu Chen,&nbsp;Dao-Wei Gao,&nbsp;Geng-Xiu Zheng,&nbsp;Yi-Pin Lv","doi":"10.1007/s12598-025-03476-8","DOIUrl":null,"url":null,"abstract":"<div><p>The selective semi-hydrogenation of phenylacetylene (PA) to styrene (ST) represents a critical industrial reaction, essential for producing polymer-grade styrene. Yet, achieving high selectivity at high conversions remains fundamentally challenging due to competing over-hydrogenation. Here we report an atomic-scale approach for encapsulating ultrafine PtCu (Platinum, Copper) bimetallic nanoclusters (NCs) within the microporous TS-1 zeolite matrix through a ligand-assisted hydrothermal strategy. Remarkably, the as-synthesized PtCu@TS-1 catalyst exhibited an unprecedented turnover frequency (TOF) of 2006.7 h<sup>−1</sup> and a superior styrene yield of 87.7%, significantly surpassing conventional Pt-based catalysts. Advanced characterization and in situ spectroscopy revealed that electron-rich Pt sites, induced by electron transfer from Cu in confined PtCu ensembles, substantially lower the activation barrier for hydrogen dissociation, accelerating selective hydrogenation. Moreover, the atomic confinement effect within the zeolite structure effectively modulates intermediate adsorption and accelerates product desorption, thus overcoming the selectivity-activity trade-off. This study introduces a generalizable atomic-level catalyst design principle, highlighting the immense potential of quantum-sized bimetallic clusters within porous materials for precisely tuning reaction selectivity and activity.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 10","pages":"7513 - 7526"},"PeriodicalIF":11.0000,"publicationDate":"2025-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic-level confinement of PtCu nanoclusters within MFI-type zeolite enables unprecedented kinetics in alkyne semi-hydrogenation\",\"authors\":\"Chang-Xu Wang,&nbsp;Shuai Wang,&nbsp;Liang-Hao Song,&nbsp;Bin Wang,&nbsp;Guo-Zhu Chen,&nbsp;Dao-Wei Gao,&nbsp;Geng-Xiu Zheng,&nbsp;Yi-Pin Lv\",\"doi\":\"10.1007/s12598-025-03476-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The selective semi-hydrogenation of phenylacetylene (PA) to styrene (ST) represents a critical industrial reaction, essential for producing polymer-grade styrene. Yet, achieving high selectivity at high conversions remains fundamentally challenging due to competing over-hydrogenation. Here we report an atomic-scale approach for encapsulating ultrafine PtCu (Platinum, Copper) bimetallic nanoclusters (NCs) within the microporous TS-1 zeolite matrix through a ligand-assisted hydrothermal strategy. Remarkably, the as-synthesized PtCu@TS-1 catalyst exhibited an unprecedented turnover frequency (TOF) of 2006.7 h<sup>−1</sup> and a superior styrene yield of 87.7%, significantly surpassing conventional Pt-based catalysts. Advanced characterization and in situ spectroscopy revealed that electron-rich Pt sites, induced by electron transfer from Cu in confined PtCu ensembles, substantially lower the activation barrier for hydrogen dissociation, accelerating selective hydrogenation. Moreover, the atomic confinement effect within the zeolite structure effectively modulates intermediate adsorption and accelerates product desorption, thus overcoming the selectivity-activity trade-off. This study introduces a generalizable atomic-level catalyst design principle, highlighting the immense potential of quantum-sized bimetallic clusters within porous materials for precisely tuning reaction selectivity and activity.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"44 10\",\"pages\":\"7513 - 7526\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-025-03476-8\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03476-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

苯乙炔(PA)选择性半加氢制苯乙烯(ST)是生产聚合级苯乙烯的关键工业反应。然而,由于过度氢化的竞争,在高转化率下实现高选择性仍然具有根本性的挑战性。在这里,我们报告了一种原子尺度的方法,通过配体辅助热液策略将超细PtCu(铂,铜)双金属纳米团簇(NCs)封装在微孔TS-1沸石基质中。值得注意的是,合成的PtCu@TS-1催化剂表现出前所未有的2006.7 h−1的周转频率(TOF)和87.7%的苯乙烯产率,显著优于传统的pt基催化剂。先进的表征和原位光谱分析表明,在受限的PtCu体系中,Cu的电子转移诱导了富电子的Pt位,大大降低了氢解离的激活势垒,加速了选择性加氢。此外,分子筛结构内部的原子约束效应有效地调节了中间吸附,加速了产物的脱附,从而克服了选择性与活性的权衡。本研究介绍了一种可推广的原子级催化剂设计原理,强调了多孔材料中量子大小的双金属团簇在精确调节反应选择性和活性方面的巨大潜力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atomic-level confinement of PtCu nanoclusters within MFI-type zeolite enables unprecedented kinetics in alkyne semi-hydrogenation

The selective semi-hydrogenation of phenylacetylene (PA) to styrene (ST) represents a critical industrial reaction, essential for producing polymer-grade styrene. Yet, achieving high selectivity at high conversions remains fundamentally challenging due to competing over-hydrogenation. Here we report an atomic-scale approach for encapsulating ultrafine PtCu (Platinum, Copper) bimetallic nanoclusters (NCs) within the microporous TS-1 zeolite matrix through a ligand-assisted hydrothermal strategy. Remarkably, the as-synthesized PtCu@TS-1 catalyst exhibited an unprecedented turnover frequency (TOF) of 2006.7 h−1 and a superior styrene yield of 87.7%, significantly surpassing conventional Pt-based catalysts. Advanced characterization and in situ spectroscopy revealed that electron-rich Pt sites, induced by electron transfer from Cu in confined PtCu ensembles, substantially lower the activation barrier for hydrogen dissociation, accelerating selective hydrogenation. Moreover, the atomic confinement effect within the zeolite structure effectively modulates intermediate adsorption and accelerates product desorption, thus overcoming the selectivity-activity trade-off. This study introduces a generalizable atomic-level catalyst design principle, highlighting the immense potential of quantum-sized bimetallic clusters within porous materials for precisely tuning reaction selectivity and activity.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信