利用GeSiO2/SnSiO2负极材料增强LIBs、SIBs和PIBs纳米结构中的能量存储:环保电池的DFT研究

IF 0.9 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
Fatemeh Mollaamin, Majid Monajjemi
{"title":"利用GeSiO2/SnSiO2负极材料增强LIBs、SIBs和PIBs纳米结构中的能量存储:环保电池的DFT研究","authors":"Fatemeh Mollaamin,&nbsp;Majid Monajjemi","doi":"10.1134/S1067821225600127","DOIUrl":null,"url":null,"abstract":"<p>So long as Li-ion batteries (LIBs) have their difficulties, the demand to improve “beyond-lithium” batteries goes beyond the factors of safety and sustainability. With the pressure for renewable energy resources and the enchantingly digitalized current lifestyle, the need for batteries will augment. Therefore, in this article, it has been evaluated the promising alternative alkali metals of “sodium-ion and potassium-ion” batteries. A vast study on H-capture by LiNa[GeO–SiO], LiK[GeO–SiO], LiNa[SnO–SiO], and LiK[SnO–SiO] was carried out including using “DFT” computations at the “CAM–B3LYP–D3/6-311+G(<i>d</i>,<i>p</i>)” level of theory. The hypothesis of the hydrogen adsorption phenomenon was figured out by density distributions of “charge density differences (CDD), total density of states/overlap population density of states (TDOS/OPDOS) and Localized orbital locator (LOL)” for nanoclusters of LiNa[GeO–SiO]–2H<sub>2</sub>, LiK[GeO–SiO]–2H<sub>2</sub>, LiNa[SnO–SiO]–2H<sub>2</sub>, and LiK[SnO–SiO]–2H<sub>2</sub>. The oscillation in charge density amounts displays that the electronic densities were mainly placed in the edge of “adsorbate/adsorbent” atoms during the adsorption status. As the benefits of “lithium, sodium or potassium” over “Ge, Sn/Si” possess its higher electron and “hole motion”, permitting “lithium, sodium or potassium” devices to operate at higher frequencies than “Ge, Sn/Si” devices. Among these, “sodium-ion” batteries seem to demonstrate the most agreement in terms of primary competence.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"65 6","pages":"335 - 350"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Energy Storage through GeSiO2/SnSiO2 Anode Materials in LIBs, SIBs and PIBs Nanoarchitecture: A DFT Study of Eco-Friendly Batteries\",\"authors\":\"Fatemeh Mollaamin,&nbsp;Majid Monajjemi\",\"doi\":\"10.1134/S1067821225600127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>So long as Li-ion batteries (LIBs) have their difficulties, the demand to improve “beyond-lithium” batteries goes beyond the factors of safety and sustainability. With the pressure for renewable energy resources and the enchantingly digitalized current lifestyle, the need for batteries will augment. Therefore, in this article, it has been evaluated the promising alternative alkali metals of “sodium-ion and potassium-ion” batteries. A vast study on H-capture by LiNa[GeO–SiO], LiK[GeO–SiO], LiNa[SnO–SiO], and LiK[SnO–SiO] was carried out including using “DFT” computations at the “CAM–B3LYP–D3/6-311+G(<i>d</i>,<i>p</i>)” level of theory. The hypothesis of the hydrogen adsorption phenomenon was figured out by density distributions of “charge density differences (CDD), total density of states/overlap population density of states (TDOS/OPDOS) and Localized orbital locator (LOL)” for nanoclusters of LiNa[GeO–SiO]–2H<sub>2</sub>, LiK[GeO–SiO]–2H<sub>2</sub>, LiNa[SnO–SiO]–2H<sub>2</sub>, and LiK[SnO–SiO]–2H<sub>2</sub>. The oscillation in charge density amounts displays that the electronic densities were mainly placed in the edge of “adsorbate/adsorbent” atoms during the adsorption status. As the benefits of “lithium, sodium or potassium” over “Ge, Sn/Si” possess its higher electron and “hole motion”, permitting “lithium, sodium or potassium” devices to operate at higher frequencies than “Ge, Sn/Si” devices. Among these, “sodium-ion” batteries seem to demonstrate the most agreement in terms of primary competence.</p>\",\"PeriodicalId\":765,\"journal\":{\"name\":\"Russian Journal of Non-Ferrous Metals\",\"volume\":\"65 6\",\"pages\":\"335 - 350\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Non-Ferrous Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1067821225600127\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1067821225600127","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

只要锂离子电池(LIBs)有其困难,对“超锂”电池的改进需求就超出了安全性和可持续性的因素。随着可再生能源的压力和迷人的数字化生活方式,对电池的需求将会增加。因此,本文对“钠离子和钾离子”电池中有前途的替代碱金属进行了评价。对LiNa[GeO-SiO]、LiK[GeO-SiO]、LiNa[SnO-SiO]和LiK[SnO-SiO]的h捕获进行了大量研究,包括在“CAM-B3LYP-D3/6-311 +G(d,p)”理论水平上使用“DFT”计算。通过对LiNa[GeO-SiO] -2H2、LiK[GeO-SiO] -2H2、LiNa[SnO-SiO] -2H2和LiK[SnO-SiO] -2H2纳米簇的“电荷密度差(CDD)、总态密度/重叠态密度(TDOS/OPDOS)和定域轨道定位器(LOL)”的密度分布,提出了氢吸附现象的假设。电荷密度的振荡表明,在吸附状态下,电子密度主要分布在“吸附物/吸附剂”原子的边缘。由于“锂、钠或钾”优于“Ge”,“Sn/Si”具有更高的电子和“空穴运动”,使得“锂、钠或钾”器件比“Ge、Sn/Si”器件工作频率更高。在这些电池中,“钠离子”电池似乎在主要能力方面表现得最为一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing Energy Storage through GeSiO2/SnSiO2 Anode Materials in LIBs, SIBs and PIBs Nanoarchitecture: A DFT Study of Eco-Friendly Batteries

Enhancing Energy Storage through GeSiO2/SnSiO2 Anode Materials in LIBs, SIBs and PIBs Nanoarchitecture: A DFT Study of Eco-Friendly Batteries

So long as Li-ion batteries (LIBs) have their difficulties, the demand to improve “beyond-lithium” batteries goes beyond the factors of safety and sustainability. With the pressure for renewable energy resources and the enchantingly digitalized current lifestyle, the need for batteries will augment. Therefore, in this article, it has been evaluated the promising alternative alkali metals of “sodium-ion and potassium-ion” batteries. A vast study on H-capture by LiNa[GeO–SiO], LiK[GeO–SiO], LiNa[SnO–SiO], and LiK[SnO–SiO] was carried out including using “DFT” computations at the “CAM–B3LYP–D3/6-311+G(d,p)” level of theory. The hypothesis of the hydrogen adsorption phenomenon was figured out by density distributions of “charge density differences (CDD), total density of states/overlap population density of states (TDOS/OPDOS) and Localized orbital locator (LOL)” for nanoclusters of LiNa[GeO–SiO]–2H2, LiK[GeO–SiO]–2H2, LiNa[SnO–SiO]–2H2, and LiK[SnO–SiO]–2H2. The oscillation in charge density amounts displays that the electronic densities were mainly placed in the edge of “adsorbate/adsorbent” atoms during the adsorption status. As the benefits of “lithium, sodium or potassium” over “Ge, Sn/Si” possess its higher electron and “hole motion”, permitting “lithium, sodium or potassium” devices to operate at higher frequencies than “Ge, Sn/Si” devices. Among these, “sodium-ion” batteries seem to demonstrate the most agreement in terms of primary competence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信