三维非定常Stokes系统的龙格近似定理

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Mitsuo Higaki, Franck Sueur
{"title":"三维非定常Stokes系统的龙格近似定理","authors":"Mitsuo Higaki,&nbsp;Franck Sueur","doi":"10.1007/s00220-025-05364-9","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate Runge-type approximation theorems for solutions to the 3D unsteady Stokes system. More precisely, we establish that on any compact set with connected complement, local smooth solutions to the 3D unsteady Stokes system can be approximated with an arbitrarily small positive error in <span>\\(L^\\infty \\)</span> norm by a global solution of the 3D unsteady Stokes system, where the velocity grows at most exponentially at spatial infinity and the pressure grows polynomially. Additionally, by considering a parasitic solution to the Stokes system, we establish that some growths at infinity are indeed necessary. These results markedly differ from the Runge-type theorem for the heat equation in Enciso–García-Ferrero–Peralta-Salas (Duke Math J 168(5):897–939, 2019), where the approximations with decay at infinity can be achieved.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05364-9.pdf","citationCount":"0","resultStr":"{\"title\":\"A Runge-Type Approximation Theorem for the 3D Unsteady Stokes System\",\"authors\":\"Mitsuo Higaki,&nbsp;Franck Sueur\",\"doi\":\"10.1007/s00220-025-05364-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate Runge-type approximation theorems for solutions to the 3D unsteady Stokes system. More precisely, we establish that on any compact set with connected complement, local smooth solutions to the 3D unsteady Stokes system can be approximated with an arbitrarily small positive error in <span>\\\\(L^\\\\infty \\\\)</span> norm by a global solution of the 3D unsteady Stokes system, where the velocity grows at most exponentially at spatial infinity and the pressure grows polynomially. Additionally, by considering a parasitic solution to the Stokes system, we establish that some growths at infinity are indeed necessary. These results markedly differ from the Runge-type theorem for the heat equation in Enciso–García-Ferrero–Peralta-Salas (Duke Math J 168(5):897–939, 2019), where the approximations with decay at infinity can be achieved.\\n</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 8\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-025-05364-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05364-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05364-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究三维非定常Stokes系统解的龙格近似定理。更准确地说,我们建立了三维非定常Stokes系统的局部光滑解可以用三维非定常Stokes系统的全局解近似于任意小的\(L^\infty \)范数正误差,其中速度在空间无穷远处最多呈指数增长,压力在空间无穷远处最多呈多项式增长。此外,通过考虑Stokes系统的寄生解,我们证明了无穷远处的某些增长确实是必要的。这些结果明显不同于Enciso-García-Ferrero-Peralta-Salas中热方程的龙格型定理(Duke Math J 168(5):897 - 939,2019),在那里可以实现无限衰减的近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Runge-Type Approximation Theorem for the 3D Unsteady Stokes System

We investigate Runge-type approximation theorems for solutions to the 3D unsteady Stokes system. More precisely, we establish that on any compact set with connected complement, local smooth solutions to the 3D unsteady Stokes system can be approximated with an arbitrarily small positive error in \(L^\infty \) norm by a global solution of the 3D unsteady Stokes system, where the velocity grows at most exponentially at spatial infinity and the pressure grows polynomially. Additionally, by considering a parasitic solution to the Stokes system, we establish that some growths at infinity are indeed necessary. These results markedly differ from the Runge-type theorem for the heat equation in Enciso–García-Ferrero–Peralta-Salas (Duke Math J 168(5):897–939, 2019), where the approximations with decay at infinity can be achieved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信