多尖随机双曲曲面的任意小谱隙

IF 2.6 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Yang Shen, Yunhui Wu
{"title":"多尖随机双曲曲面的任意小谱隙","authors":"Yang Shen,&nbsp;Yunhui Wu","doi":"10.1007/s00220-025-05366-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathcal {M}_{g,n(g)}\\)</span> be the moduli space of hyperbolic surfaces of genus <i>g</i> with <i>n</i>(<i>g</i>) punctures endowed with the Weil–Petersson metric. In this paper we study the asymptotic behavior of the Cheeger constants and spectral gaps of random hyperbolic surfaces in <span>\\(\\mathcal {M}_{g,n(g)}\\)</span>, when <i>n</i>(<i>g</i>) grows slower than <i>g</i> as <span>\\(g\\rightarrow \\infty \\)</span>.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arbitrarily Small Spectral Gaps for Random Hyperbolic Surfaces with Many Cusps\",\"authors\":\"Yang Shen,&nbsp;Yunhui Wu\",\"doi\":\"10.1007/s00220-025-05366-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathcal {M}_{g,n(g)}\\\\)</span> be the moduli space of hyperbolic surfaces of genus <i>g</i> with <i>n</i>(<i>g</i>) punctures endowed with the Weil–Petersson metric. In this paper we study the asymptotic behavior of the Cheeger constants and spectral gaps of random hyperbolic surfaces in <span>\\\\(\\\\mathcal {M}_{g,n(g)}\\\\)</span>, when <i>n</i>(<i>g</i>) grows slower than <i>g</i> as <span>\\\\(g\\\\rightarrow \\\\infty \\\\)</span>.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 8\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05366-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05366-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

设\(\mathcal {M}_{g,n(g)}\)为具有n(g)个孔且具有Weil-Petersson度规的g属双曲曲面的模空间。本文研究了\(\mathcal {M}_{g,n(g)}\)中n(g)增长慢于\(g\rightarrow \infty \)时随机双曲曲面的Cheeger常数和谱隙的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Arbitrarily Small Spectral Gaps for Random Hyperbolic Surfaces with Many Cusps

Arbitrarily Small Spectral Gaps for Random Hyperbolic Surfaces with Many Cusps

Let \(\mathcal {M}_{g,n(g)}\) be the moduli space of hyperbolic surfaces of genus g with n(g) punctures endowed with the Weil–Petersson metric. In this paper we study the asymptotic behavior of the Cheeger constants and spectral gaps of random hyperbolic surfaces in \(\mathcal {M}_{g,n(g)}\), when n(g) grows slower than g as \(g\rightarrow \infty \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信