{"title":"多尖随机双曲曲面的任意小谱隙","authors":"Yang Shen, Yunhui Wu","doi":"10.1007/s00220-025-05366-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathcal {M}_{g,n(g)}\\)</span> be the moduli space of hyperbolic surfaces of genus <i>g</i> with <i>n</i>(<i>g</i>) punctures endowed with the Weil–Petersson metric. In this paper we study the asymptotic behavior of the Cheeger constants and spectral gaps of random hyperbolic surfaces in <span>\\(\\mathcal {M}_{g,n(g)}\\)</span>, when <i>n</i>(<i>g</i>) grows slower than <i>g</i> as <span>\\(g\\rightarrow \\infty \\)</span>.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arbitrarily Small Spectral Gaps for Random Hyperbolic Surfaces with Many Cusps\",\"authors\":\"Yang Shen, Yunhui Wu\",\"doi\":\"10.1007/s00220-025-05366-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathcal {M}_{g,n(g)}\\\\)</span> be the moduli space of hyperbolic surfaces of genus <i>g</i> with <i>n</i>(<i>g</i>) punctures endowed with the Weil–Petersson metric. In this paper we study the asymptotic behavior of the Cheeger constants and spectral gaps of random hyperbolic surfaces in <span>\\\\(\\\\mathcal {M}_{g,n(g)}\\\\)</span>, when <i>n</i>(<i>g</i>) grows slower than <i>g</i> as <span>\\\\(g\\\\rightarrow \\\\infty \\\\)</span>.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 8\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05366-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05366-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Arbitrarily Small Spectral Gaps for Random Hyperbolic Surfaces with Many Cusps
Let \(\mathcal {M}_{g,n(g)}\) be the moduli space of hyperbolic surfaces of genus g with n(g) punctures endowed with the Weil–Petersson metric. In this paper we study the asymptotic behavior of the Cheeger constants and spectral gaps of random hyperbolic surfaces in \(\mathcal {M}_{g,n(g)}\), when n(g) grows slower than g as \(g\rightarrow \infty \).
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.